Generating sets of Completely 0-Simple Semigroups

Robert Gray

University of St Andrews

Rank

Definition Let S be a semigroup and let T be a subset of S.

The *rank* of S is the smallest number of elements needed in order to generate S:

 $\operatorname{rank}(S) = \min\{|A| : \langle A \rangle = S\}.$

The *relative rank* of S modulo T is the minimal number of elements of S that need to be added to Tin order to generate the whole of S:

 $\operatorname{rank}(S:T) = \min\{|A| : A \subseteq S, \langle T \cup A \rangle = S\}.$

Example: the structure of T_3

Definition Let J be some \mathcal{J} class of a semigroup S. Then the principal factor of S corresponding to J is the set $J^* = J \cup \{0\}$ with multiplication

$$s * t = \begin{cases} st & : \text{ if } s, t, st \in J \\ 0 & : \text{ otherwise.} \end{cases}$$

Definition A semigroup with zero is called 0-simple if $\{0\}$ and S are its only ideals.

Theorem If J is a \mathcal{J} class of a semigroup S then J^* is either a 0-simple semigroup or else it is a zero semigroup.

Definition

 $\blacksquare G$ - a finite group.

Definition

G - a finite group.
I, Λ be non-empty finite index sets.

Definition

- $\blacksquare G$ a finite group.
- I, Λ be non-empty finite index sets.
- $\square P = (p_{\lambda i})$ a regular $\Lambda \times I$ matrix over $G \cup \{0\}$.

Definition

G - a finite group. I, Λ be non-empty finite index sets. $\square P = (p_{\lambda i})$ a regular $\Lambda \times I$ matrix over $G \cup \{0\}$. $\blacksquare S = (I \times G \times \Lambda) \cup \{0\}$ with multiplication $(i, g, \lambda)(j, h, \mu) = \begin{cases} (i, gp_{\lambda j}h, \mu) & : & p_{\lambda j} \neq 0 \\ 0 & : & \text{otherwise} \end{cases}$ $(i, g, \lambda)0 = 0(i, g, \lambda) = 00 = 0.$

Theorem(The Rees Theorem) A semigroup S is completely 0-simple if and only if it is isomorphic to $\mathcal{M}^0[G; I, \Lambda; P]$ where G is a group and P is regular.

Problem Find a formula for the rank of an arbitrary completely 0-simple semigroup.

What might we expect the value to depend on?

Problem Find a formula for the rank of an arbitrary completely 0-simple semigroup.

What might we expect the value to depend on?
|I|, |Λ|.

Problem Find a formula for the rank of an arbitrary completely 0-simple semigroup.

What might we expect the value to depend on?
|I|, |Λ|.
rank(G).

Problem Find a formula for the rank of an arbitrary completely 0-simple semigroup.

 $\blacksquare E(S)$ ('contribution' from the entries in the matrix).

Problem Find a formula for the rank of an arbitrary completely 0-simple semigroup.

E(S) ('contribution' from the entries in the matrix).
 Remember that (i, p_{λi}⁻¹, λ) are idempotent

$$(i, p_{\lambda i}^{-1}, \lambda)(i, p_{\lambda i}^{-1}, \lambda) = (i, p_{\lambda i}^{-1} p_{\lambda i} p_{\lambda i}^{-1}, \lambda) = (i, p_{\lambda i}^{-1}, \lambda).$$

We will break the problem up and consider the following special cases:

- **G**roups.
- Rectangular bands.
- **Rectangular** 0-bands $\mathcal{M}^0[\{e\}; I, \Lambda; P]$.
- Simple semigroups.
- **C**onnected 0-simple semigroups.
- Brandt semigroups ($P \sim I$).

Lemma Let G be a finite group, then

 $\operatorname{rank}(\mathcal{M}^{0}[G; \{1\}, \{1\}; (1)]) = \operatorname{rank}(G).$

Definition
$$R_{mn} = \{1, ..., m\} \times \{1, ..., n\}$$
 with
 $(i, j)(k, l) = (i, l).$

Proposition

$$\operatorname{rank}(R_{mn}) = \max\{m, n\}.$$

Proof

Definition Let $I = \{1, 2, ..., m\}$ and $\Lambda = \{1, 2, ..., n\}$ be finite sets and let P be a regular $n \times m$ matrix of 0s and 1s. A *rectangular* 0-*band* is a semigroup $S = ZB_{mn} = (I \times \lambda) \cup \{0\}$ whose multiplication is given by

$$(i,\lambda)(j,\mu) = \begin{cases} (i,\mu) & : & \text{if } p_{\lambda j} = 1\\ 0 & : & \text{if } p_{\lambda j} = 0 \end{cases}$$
$$(i,\lambda)0 = 0(i,\lambda) = 00 = 0.$$

$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$ $A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$

$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$ $A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$

$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$ $A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$

$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$ $A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$

Figure 1:

(1, 1)

$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$ $A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$

Figure 1:

(1,1)(2,3)

$$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$
$$= \{(1, 1), (2, 3), (3, 4), (4, 2)\}$$

Figure 1:

 $(1, \underline{1})(2, 3)$ $p_{12} = 1$

Figure 1:

$$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$
$$= \{(1, 1), (2, 3), (3, 4), (4, 2)\}$$

(1,1)(2,3) = $p_{12} = 1$

$$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$
$$A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$$
$$P_{12} = 1$$

Figure 1:

$$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$
$$A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$$
$$A = \{(1, 3), (2, 3) = (1, 3)\}$$

 $p_{12} = 1$

BMC 2004 - p.13/2.

Figure 1:

$$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$
$$I = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$$
$$I = \{(1, 3), (2, 3) = (1, 3)\}$$

 $p_{12} = 1$

BMC 2004 – p.13/2.

$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$ $A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$

Figure 2:

$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$ $A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$

$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$ $A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$

Figure 2:

$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$ $A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$

(2,3)

Figure 2:

$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$ $A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$

(2,3)(1,1)

Figure 2:

$$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$
$$I = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$$

 $(2, \underline{3})(1, 1)$ $p_{31} = 0$

Figure 2:

$$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$
$$I = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$$

 $\begin{array}{c} \hline (2,3)(1,1) = 0 \\ p_{31} = 0 \end{array}$

Figure 2:

$$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$
$$\mathbf{A} = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$$

(2,3)(1,1) = 0 $p_{31} = 0$

Theorem Let $S = ZB_{mn}$, be an $m \times n$ rectangular 0-band, then

 $\operatorname{rank}(S) = \max\{m, n\}.$

Corollaries

Corollary If $S = \mathcal{M}^0[G; I, \Lambda; P]$ is idempotent generated then

 $\operatorname{rank}(S) = \max(|I|, |\Lambda|).$

Corollaries

Corollary If $S = \mathcal{M}^0[G; I, \Lambda; P]$ is idempotent generated then

$$\operatorname{rank}(S) = \max(|I|, |\Lambda|).$$

Corollary With

 $K(n,r) = \{ \alpha \in T_n : |im(\alpha)| \le r \}, (2 \le r \le n-1)$

we have

$$\operatorname{rank}(K(n,r)) = \max\binom{n}{r}, S(n,r)$$
$$= S(n,r).$$

Simple

Theorem(NR,1994) Let $S = \mathcal{M}[G; I, \Lambda; P]$ be a finite Rees matrix semigroup with P in normal form. Then

rank
$$(S) = \max(|I|, |\Lambda|, \operatorname{rank}(G : H))$$

where $H = \langle P \rangle$.

Normal form

$$P = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & g_{22} & g_{23} & \dots & g_{2n} \\ 1 & g_{32} & g_{33} & \dots & g_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & g_{n2} & g_{n3} & \dots & g_{nn} \end{pmatrix}$$

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P]$, then we let $\Gamma(S)$ be the graph with set of vertices $\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group}\}$ and (i, λ) adjacent to (j, μ) if and only if i = j or $\lambda = \mu$. **Definition** We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected. **Example** Connected.

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P]$, then we let $\Gamma(S)$ be the graph with set of vertices $\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group}\}$ and (i, λ) adjacent to (j, μ) if and only if i = j or $\lambda = \mu$. **Definition** We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected. **Example** Connected.

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P]$, then we let $\Gamma(S)$ be the graph with set of vertices $\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group}\}$ and (i, λ) adjacent to (j, μ) if and only if i = j or $\lambda = \mu$. **Definition** We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected. **Example** Connected.

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P]$, then we let $\Gamma(S)$ be the graph with set of vertices $\{(i,\lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group}\} \text{ and } (i,\lambda) \text{ adjacent to}$ (j,μ) if and only if i=j or $\lambda=\mu$. **Definition** We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected. **Example** Connected. In particular $S = \mathcal{M}[G; I, \Lambda; P]$ (simple semigroups) are all connected.

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P]$, then we let $\Gamma(S)$ be the graph with set of vertices $\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group}\}$ and (i, λ) adjacent to (j, μ) if and only if i = j or $\lambda = \mu$. **Definition** We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected. **Example** Disconnected.

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P]$, then we let $\Gamma(S)$ be the graph with set of vertices $\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group}\}$ and (i, λ) adjacent to (j, μ) if and only if i = j or $\lambda = \mu$. **Definition** We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected. **Example** Disconnected.

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P]$, then we let $\Gamma(S)$ be the graph with set of vertices $\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group}\}$ and (i, λ) adjacent to (j, μ) if and only if i = j or $\lambda = \mu$. **Definition** We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected. **Example** Disconnected.

Connected

Theorem(NR,1994) Let $S = \mathcal{M}^0[G; I, \Lambda; P]$ be a finite connected Rees matrix semigroup with regular matrix P (in normal form). Then

 $\operatorname{rank}(S) = \max(|I|, |\Lambda|, \operatorname{rank}(G : H))$

where H is the subgroup of G generated by the non-zero entries in P.

Theorem(Howie,Gomes,1986) Let $B = B(G, \{1, ..., n\})$ be a Brandt semigroup, where G is a finite group of rank r. Then the rank of B (as an inverse semigroup) is r + n - 1. Theorem(Howie,Gomes,1986) Let $B = B(G, \{1, ..., n\})$ be a Brandt semigroup, where Gis a finite group of rank r. Then the rank of B (as an inverse semigroup) is r + n - 1. **Proof** (\leq) $A = \{(1, g_1, 1), ..., (1, g_r, 1), (1, e, 2), (2, e, 3), ..., (n - 1, e, n)\}$ (\geq) Using graph theory.

	$G = \{e\}$	G arbitrary	
Connected			
Disconnected			
Brandt			

		$G = \{e\}$		G arbitrary
Connecte	ed		$\max(I $	$[V , \Lambda , \operatorname{rank}(G:H))$
Disconnec	ted			
Brandt				

	$G = \{e\}$	G arbitrary
Connected		$\max(I , \Lambda , \operatorname{rank}(G:H))$
Disconnected		
Brandt		$\max(n, n, r+n-1)$

	$G = \{e\}$	G arbitrary
Connected	$\max(I , \Lambda)$	$\max(I , \Lambda , \operatorname{rank}(G:H))$
Disconnected		
Brandt	$\max(n,n)$	$\max(n, n, r+n-1)$

	$G = \{e\}$	G arbitrary
Connected	$\max(I , \Lambda)$	$\max(I , \Lambda , \operatorname{rank}(G:H))$
Disconnected	$\max(I , \Lambda)$	
Brandt	$\max(n,n)$	$\max(n, n, r+n-1)$

	$G = \{e\}$	G arbitrary
Connected	$\max(I , \Lambda)$	$\max(I , \Lambda , \operatorname{rank}(G:H))$
Disconnected	$\max(I , \Lambda)$?
Brandt	$\max(n,n)$	$\max(n, n, r+n-1)$

General Formula

Theorem Let $S = \mathcal{M}^0[G; I, \Lambda; P]$ be a finite Rees matrix semigroup with regular matrix P (in normal form) with connected components C_1, \ldots, C_k and H_j the subgroup of G generated by all non-zero entries of C_j , for $j = 1, \ldots, k$. Then

$$\operatorname{rank}(S) = \max(|I|, |\Lambda|, r_{\min} + k - 1)$$

where

$$r_{\min} = \min_{\substack{(g_1, \cdots, g_k) \in \underbrace{G \times \ldots \times G}_k} (\operatorname{rank}(G : \bigcup_{j=1}^k g_j^{-1} H_j g_j)).$$