Generating sets of Completely 0**-Simple Semigroups**

Robert Gray

University of St Andrews

Rank

Definition Let S be ^a semigroup and let T be ^a subset of S.

The *rank* of S is the smallest number of elements needed in order to generate S :

 $rank(S) = min{ |A| : \langle A \rangle = S }$.

The *relative rank* of S modulo T is the minimal number of elements of S that need to be added to T in order to generate the whole of S :

rank $(S: T) = \min\{|A|: A \subseteq S, \langle T \cup A \rangle = S\}.$

Example: the structure of T_3

Principal factors

Definition Let J be some $\mathcal J$ class of a semigroup $S.$ Then the principal factor of S corresponding to J is the set $J^*=J\cup\{0\}$ with multiplication

$$
s * t = \begin{cases} st & \text{if } s, t, st \in J \\ 0 & \text{otherwise.} \end{cases}
$$

Definition A semigroup with zero is called 0*-simple* if {0} and S are its only ideals.

Theorem If J is a $\mathcal J$ class of a semigroup S then J^* is either a 0-simple semigroup or else it is ^a zero semigroup.

Definition

```
G - a finite group.
```
Definition

 G - a finite group. I, Λ be non-empty finite index sets.

Definition

- G a finite group.
- I, Λ be non-empty finite index sets.
- $P = (p_{\lambda i})$ a *regular* $\Lambda \times I$ matrix over $G \cup \{0\}.$

Definition

 G - a finite group. I, Λ be non-empty finite index sets. $P = (p_{\lambda i})$ a *regular* $\Lambda \times I$ matrix over $G \cup \{0\}.$ $S = (I \times G \times \Lambda) \cup \{0\}$ with multiplication $(i, g, \lambda)(j, h, \mu) =$ $\begin{cases} (i, gp_{\lambda j}h, \mu) & : \quad p_{\lambda j} \neq 0 \\ 0 & : \quad \text{otherwise} \end{cases}$ $(i, q, \lambda)0 = 0(i, q, \lambda) = 00 = 0.$

Theorem(The Rees Theorem) A semigroup S is completely 0-simple if and only if it is isomorphic to $\mathcal{M}^0[G; I, \Lambda; P]$ where G is a group and P is regular.

Problem Find ^a formula for the rank of an arbitrary completely 0-simple semigroup.

■ What might we expect the value to depend on?

Problem Find ^a formula for the rank of an arbitrary completely 0-simple semigroup.

■ What might we expect the value to depend on? $|I|, |\Lambda|.$

Problem Find ^a formula for the rank of an arbitrary completely 0-simple semigroup.

■ What might we expect the value to depend on? $=$ $|I|, |\Lambda|$. **rank** (G) .

Problem Find ^a formula for the rank of an arbitrary completely 0-simple semigroup.

 $E(S)$ ('contribution' from the entries in the matrix).

Problem Find ^a formula for the rank of an arbitrary completely 0-simple semigroup.

 $E(S)$ ('contribution' from the entries in the matrix). Remember that $(i, p_{\lambda i}{}^{-1}, \lambda)$ are idempotent

$$
(i, p_{\lambda i}^{-1}, \lambda)(i, p_{\lambda i}^{-1}, \lambda) = (i, p_{\lambda i}^{-1} p_{\lambda i} p_{\lambda i}^{-1}, \lambda)
$$

= $(i, p_{\lambda i}^{-1}, \lambda).$

We will break the problem up and consider the following special cases:

- Groups.
- **Rectangular bands.**
- Rectangular 0-bands $\mathcal{M}^0[\{e\}; I, \Lambda; P]$.
- Simple semigroups.
- Connected 0-simple semigroups.
- Brandt semigroups ($P \sim I$).

Lemma Let G be ^a finite group, then

```
rank(\mathcal{M}^0[G; \{1\}, \{1\}; (1)]) = \text{rank}(G).
```


Definition
$$
R_{mn} = \{1, ..., m\} \times \{1, ..., n\}
$$
 with

$$
(i, j)(k, l) = (i, l).
$$

Proposition

$$
rank(R_{mn}) = max\{m, n\}.
$$

Proof

Definition Let $I=\{1,2,\ldots,m\}$ and $\Lambda=\{1,2,\ldots,n\}$ be finite sets and let P be a regular $n \times m$ matrix of $0\mathrm{s}$ and 1s. A *rectangular* 0*-band* is ^a semigroup $S = ZB_{mn} = (I \times \lambda) \cup \{0\}$ whose multiplication is given by

$$
(i, \lambda)(j, \mu) = \begin{cases} (i, \mu) & : \text{if } p_{\lambda j} = 1 \\ 0 & : \text{if } p_{\lambda j} = 0 \end{cases}
$$

$$
(i, \lambda)0 = 0 (i, \lambda) = 00 = 0.
$$

$P=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\Delta x^{\ast}$ $\left(\begin{array}{rrrr} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \end{array}\right)$ $A = \{(1,1), (2,3), (3,4), (4,2)\}$

$P=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\Delta x^{\ast}$ $\left(\begin{array}{rrrr} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \end{array}\right)$ $A = \{(1,1), (2,3), (3,4), (4,2)\}$

$P=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\Delta x^{\ast}$ $\left(\begin{array}{rrrr} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \end{array}\right)$ $A = \{(1,1), (2,3), (3,4), (4,2)\}$

$P=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\Delta x^{\ast}$ $\left(\begin{array}{rrrr} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \end{array}\right)$ $A = \{(1,1), (2,3), (3,4), (4,2)\}$

Figure 1:

 $(1, 1)$

BMC 2004 – p.13/23

$P=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\Delta x^{\ast}$ $\left(\begin{array}{rrrr} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \end{array}\right)$ $A = \{(1,1), (2,3), (3,4), (4,2)\}$

Figure 1:

 $(1, 1)(2, 3)$

$$
P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}
$$

$$
A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}
$$

Figure 1:

 $(1,1)(2,3)$ $p_{12}=1$

Figure 1:

$$
P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}
$$

$$
A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}
$$

 $(1,1)(2,3)=$ $p_{12}=1$

$$
P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}
$$

$$
A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}
$$

$$
(1, 1)(2, 3) = (1, 3)
$$

$$
p_{12} = 1
$$

Figure 1:

$$
P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}
$$

$$
A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}
$$

$$
(1, 1)(2, 3) = (1, 3)
$$

$$
p_{12}=1
$$

BMC 2004 – p.13/23

Figure 1:

$$
P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}
$$

$$
A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}
$$

$$
(1, 1)(2, 3) = (1, 3)
$$

 $p_{12}=1$

BMC 2004 – p.13/23

$P=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\Delta x^{\ast}$ $\left(\begin{array}{rrrr} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \end{array}\right)$ $A = \{(1,1), (2,3), (3,4), (4,2)\}$

Figure 2:

$P=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\Delta x^{\ast}$ $\left(\begin{array}{rrrr} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \end{array}\right)$ $A = \{(1,1), (2,3), (3,4), (4,2)\}$

$P=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\Delta x^{\ast}$ $\left(\begin{array}{rrrr} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \end{array}\right)$ $A = \{(1,1), (2,3), (3,4), (4,2)\}$

Figure 2:

$P=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\Delta x^{\ast}$ $\left(\begin{array}{rrrr} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \end{array}\right)$ $A = \{(1,1), (2,3), (3,4), (4,2)\}$

Figure 2:

 $\overline{(2,3)}$

Figure 2:

$P=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\Delta x^{\ast}$ $\left(\begin{array}{rrrr} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \end{array}\right)$ $A = \{(1,1), (2,3), (3,4), (4,2)\}$

 $(2, 3)(1, 1)$

Figure 2:

$$
P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}
$$

$$
A = \{ (1, 1), (2, 3), (3, 4), (4, 2) \}
$$

 $(2,3)(1,1)$ $p_{31}=0$

$$
P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}
$$

$$
A = \{ (1, 1), (2, 3), (3, 4), (4, 2) \}
$$

 $(2, 3)(1, 1)=0$ $p_{31}=0$

Figure 2:

Figure 2:

$$
P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}
$$

$$
A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}
$$

 $(2,3)(1,1)=0$ $p_{31} = 0$

Theorem Let $S = ZB_{mn}$, be an $m \times n$ rectangular 0-band, then

 $\text{rank}(S) = \max\{m, n\}.$

Corollaries

Corollary If $S = \mathcal{M}^0[G; I, \Lambda; P]$ is idempotent generated then

rank $(S) = \max(|I|, |\Lambda|).$

Corollaries

Corollary If $S = \mathcal{M}^0[G; I, \Lambda; P]$ is idempotent generated then

$$
rank(S) = max(|I|, |\Lambda|).
$$

Corollary With

 $K(n,r) = \{\alpha \in T_n : |\text{im}(\alpha)| \leq r\}, (2 \leq r \leq n-1)$

we have

$$
\text{rank}(K(n,r)) = \max(\binom{n}{r}, S(n,r))
$$

$$
= S(n,r).
$$

Simple

Theorem(NR,1994) Let $S = \mathcal{M}[G; I, \Lambda; P]$ be a finite Rees matrix semigroup with P in normal form. Then

$$
rank(S) = \max(|I|, |\Lambda|, \text{rank}(G : H))
$$

where $H = \langle P \rangle$.

Normal form

$$
P = \left(\begin{array}{ccccc} 1 & 1 & 1 & \dots & 1 \\ 1 & g_{22} & g_{23} & \dots & g_{2n} \\ 1 & g_{32} & g_{33} & \dots & g_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & g_{n2} & g_{n3} & \dots & g_{nn} \end{array}\right)
$$

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P],$ then we let $\Gamma(S)$ be the graph with set of vertices $\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group }\}$ and (i, λ) adjacent to (j, μ) if and only if $i = j$ or $\lambda = \mu$. **Definition** We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected. **Example** Connected.

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P],$ then we let $\Gamma(S)$ be the graph with set of vertices $\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group }\}$ and (i, λ) adjacent to (j, μ) if and only if $i = j$ or $\lambda = \mu$. **Definition** We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected. **Example** Connected.

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P],$ then we let $\Gamma(S)$ be the graph with set of vertices $\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group }\}$ and (i, λ) adjacent to (j, μ) if and only if $i = j$ or $\lambda = \mu$. **Definition** We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected. **Example** Connected.

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P],$ then we let $\Gamma(S)$ be the graph with set of vertices $\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group }\}$ and (i, λ) adjacent to (j, μ) if and only if $i = j$ or $\lambda = \mu$. **Definition** We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected. **Example** Connected. In particular $S = \mathcal{M}[G; I, \Lambda; P]$ (simple semigroups) are all connected.

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P],$ then we let $\Gamma(S)$ be the graph with set of vertices $\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group }\}$ and (i, λ) adjacent to (j, μ) if and only if $i = j$ or $\lambda = \mu$. **Definition** We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected. **Example** Disconnected.

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P],$ then we let $\Gamma(S)$ be the graph with set of vertices $\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group }\}$ and (i, λ) adjacent to (j, μ) if and only if $i = j$ or $\lambda = \mu$. **Definition** We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected. **Example** Disconnected.

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P],$ then we let $\Gamma(S)$ be the graph with set of vertices $\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group }\}$ and (i, λ) adjacent to (j, μ) if and only if $i = j$ or $\lambda = \mu$. **Definition** We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected. **Example** Disconnected.

Connected

Theorem(NR,1994) Let $S = \mathcal{M}^0[G; I, \Lambda; P]$ be a finite connected Rees matrix semigroup with regular matrix P (in normal form). Then

 $rank(S) = max(|I|, |\Lambda|, rank(G : H))$

where H is the subgroup of G generated by the non-zero entries in P.

Brandt Semigroup

Theorem(Howie,Gomes,1986) Let $B = B(G, \{1, \ldots, n\})$ be a Brandt semigroup, where G is a finite group of rank $r.$ Then the rank of B (as an inverse semigroup) is $r+n-1.$

Theorem(Howie,Gomes,1986) Let $B = B(G, \{1, \ldots, n\})$ be a Brandt semigroup, where G is a finite group of rank $r.$ Then the rank of B (as an inverse semigroup) is $r+n-1.$ **Proof** $(<)$ $A=\{(1,g_1,1),\ldots,(1,g_r,1),(1,e,2),(2,e,3),\ldots,(n-1,e,n)\}$ (\geq) Using graph theory.

General Formula

Theorem Let $S = \mathcal{M}^0[G; I, \Lambda; P]$ be a finite Rees matrix semigroup with regular matrix P (in normal form) with connected components C_1, \ldots, C_k and H_i the subgroup of G generated by all non-zero entries of C_i , for $j=1,\ldots,k.$ Then

$$
rank(S) = max(|I|, |\Lambda|, r_{\min} + k - 1)
$$

where

$$
r_{\min} = \min_{(g_1,\dots,g_k)\in G \times \dots \times G} (\text{rank}(G : \bigcup_{j=1}^k g_j^{-1} H_j g_j)).
$$