Semigroup presentations via boundaries in Cayley graphs¹

Robert Gray

University of Leeds

BMC, Newcastle 2006

4 0 8 1

重き

 Ω

Robert Gray (University of Leeds) BMC 2006 1/12

¹ (Research conducted while I was a research student at the University of St Andrews, under supervision of Nik Ruškuc.)

Semigroup presentations

Definition

- Presentation: $\langle A|R\rangle$ *A* alphabet (abstract generators) $R \subseteq A^+ \times A^+$ set of pairs of words (defining relations)
- Defines the semigroup $\bar{S} \cong \bar{A}^+/\eta$ where η is the smallest congruence on *A* ⁺ containing *R*.
- *S* is finitely generated if *A* can be chosen to be finite.
- *S* is finitely presented if *A* and *R* can both be chosen to be finite.

 Ω

同下 イヨト

Semigroup presentations

Definition

- Presentation: $\langle A|R\rangle$ *A* alphabet (abstract generators) $R \subseteq A^+ \times A^+$ set of pairs of words (defining relations)
- Defines the semigroup $\bar{S} \cong \bar{A}^+/\eta$ where η is the smallest congruence on *A* ⁺ containing *R*.
- *S* is finitely generated if *A* can be chosen to be finite.
- *S* is finitely presented if *A* and *R* can both be chosen to be finite.

Facts

Every finite semigroup is finitely presented (Cayley table).

Not every finitely generated semigroup is finitely presented

$$
\langle a, b \mid ab^i a = aba (i = 2, 3, \ldots) \rangle.
$$

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Presentations for subsemigroups

Let *T* be a subsemigroup of *S*.

In general...

- **1** S finitely generated \neq *T* finitely generated.
- 2 S finitely presented and T finitely generated \neq T finitely presented.

 Ω

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B}

Presentations for subsemigroups

Let *T* be a subsemigroup of *S*.

In general...

- **1** S finitely generated \neq T finitely generated.
- 2 S finitely presented and T finitely generated \neq T finitely presented.

Theorem (Jura (1978))

S finitely generated and S \ *T finite* ⇒ *T finitely generated.*

Theorem (Ruškuc (1998))

S finitely presented and S \setminus *T finite* ⇒ *T finitely presented.*

 Ω

イロト イ押 トイラト イラト

Presentations for subsemigroups

Let *T* be a subsemigroup of *S*.

In general...

- **1** S finitely generated \neq T finitely generated.
- 2 S finitely presented and T finitely generated \neq T finitely presented.

Theorem (Jura (1978))

S finitely generated and S \setminus *T finite* ⇒ *T finitely generated.*

Theorem (Ruškuc (1998))

S finitely presented and S \setminus *T finite* ⇒ *T finitely presented.*

Question

Can the condition $|S \setminus T| < \infty$ be replaced by something weaker?

Cayley Graphs

Definition

Let *S* be a semigroup generated by a finite set *A*

The right Cayley graph Γ*r*(*A*,*S*) has:

- Vertices: elements of *S*.
- Edges: directed and labelled with letters from *A*.

$$
s\stackrel{a}{\rightarrow}t\Leftrightarrow sa=t
$$

Bicyclic monoid $B = \langle b, c | b c = 1 \rangle$

 Ω

 \rightarrow \equiv \rightarrow する

 \sim

Semigroup boundaries

Definition

- Let *T* be a subsemigroup of *S*.
- The right boundary of *T* in *S* is the set of elements of *T* that *receive an edge from S* \ *T* in the right Cayley graph of *S*:

 $B_r(A, T) = (S \setminus T)A \cap T$.

 Ω

 \rightarrow \pm \rightarrow

∢ □ ▶ ィ [□] ▶

Semigroup boundaries

Definition

- Let *T* be a subsemigroup of *S*.
- The right boundary of *T* in *S* is the set of elements of *T* that *receive an edge from S* \ *T* in the right Cayley graph of *S*:

$$
\mathcal{B}_r(A,T)=(S\setminus T)A\cap T.
$$

The left boundary of *T* in *S* is the set of elements of *T* that receive an edge from $S \setminus T$ in the left Cayley graph of S:

$$
\mathcal{B}_1(A, T) = A(S \setminus T) \cap T.
$$

• The (two-sided) boundary is the union of the left and right boundaries:

$$
\mathcal{B}(A, T) = \mathcal{B}_1(A, T) \cup \mathcal{B}_r(A, T).
$$

 Ω

 \rightarrow \equiv \rightarrow

 \leftarrow \Box

A straightforward example

Example (Free monoid on two generators)

 $S = \{a, b\}^*, \quad T = \{$ words that begin with the letter $a\}.$

 Ω

K ロメ K 御 メ K 君 メ K 君 X

A straightforward example

Example (Free monoid on two generators)

 $S = \{a, b\}^*, \quad T = \{$ words that begin with the letter $a\}.$

 Ω

イロト イ押ト イヨト イヨ

Basic properties

Proposition (Invariance)

Let A and B be two finite generating sets for a semigroup S. Then B*r*(*A*, *T*) *is finite if and only if* B*r*(*B*, *T*) *is finite. (The same for left and two-sided.)*

Proposition

The following conditions are all sufficient for T to have a finite boundary.

$$
\textcolor{blue}{\bullet} \ |S \setminus T| < \infty
$$

$$
\bullet \ \ S \setminus T \ \text{is a two-sided ideal of } S
$$

 Ω

イロト イ押ト イヨト イヨト

Example

Let *S* be the semigroup with set of generators $A = \{a\} \cup B \cup C \cup \{0\},\$ where *B* and *C* are finite alphabets, and relations *R* given by:

Let $T = \langle A \setminus a \rangle$. Then:

 4190

 $-$

4 m +

 $-4.77 + 1.6$

Example

Let *S* be the semigroup with set of generators $A = \{a\} \cup B \cup C \cup \{0\},\$ where *B* and *C* are finite alphabets, and relations *R* given by:

Let $T = \langle A \setminus a \rangle$. Then:

 (i) *N* = {0} ∪ {*aⁱ* : *i* ∈ N} ∪ *B* ∪ *C* ∪ *BC* ∪ *CB* ∪ *BCB* ∪ *CBC* ∪ . . . is a set of normal forms for *S*;

 4190

Example

Let *S* be the semigroup with set of generators $A = \{a\} \cup B \cup C \cup \{0\}$, where *B* and *C* are finite alphabets, and relations *R* given by:

Let $T = \langle A \setminus a \rangle$. Then:

 (i) *N* = {0} ∪ {*aⁱ* : *i* ∈ N} ∪ *B* ∪ *C* ∪ *BC* ∪ *CB* ∪ *BCB* ∪ *CBC* ∪ . . . is a set of normal forms for *S*;

(ii)
$$
B_r(A, T) = \{a^i : i \in \mathbb{N}^0\} A \cap T = B \cup \{0\};
$$

$$
\text{(iii)}\ \mathcal{B}_I(A,T)=A\{a^i:i\in\mathbb{N}^0\}\cap T=C\cup\{0\};
$$

4 F + 4 F +

 $419C$

Example

Let *S* be the semigroup with set of generators $A = \{a\} \cup B \cup C \cup \{0\},\$ where *B* and *C* are finite alphabets, and relations *R* given by:

Let $T = \langle A \setminus a \rangle$. Then:

 (i) *N* = {0} ∪ {*aⁱ* : *i* ∈ N} ∪ *B* ∪ *C* ∪ *BC* ∪ *CB* ∪ *BCB* ∪ *CBC* ∪ . . . is a set of normal forms for *S*;

(ii)
$$
B_r(A, T) = \{a^i : i \in \mathbb{N}^0\} A \cap T = B \cup \{0\};
$$

$$
(iii) \ \mathcal{B}_1(A, T) = A\{a^i : i \in \mathbb{N}^0\} \cap T = C \cup \{0\};
$$

- (iv) *S* and *T* are both infinite;
- (v) $S \setminus T$ is infinite.

 4190

Unexpected behavior

Example (Non-transitivity)

Let *S* be the semigroup (with zero) defined by

$$
\langle a,b,c \mid ba=0,cb=0,ca=0 \rangle.
$$

- Let $T = \langle a, b, bc \rangle$ and $K = \langle a, abc \rangle$. Then $K \leq T \leq S$:
	- ¹ *K* has finite boundary in *T*
	- ² *T* has finite boundary in *S*
	- ³ *K* has infinite boundary in *S*.

Note

This contrasts with finite complement subsemigroups where the property is obviously transitive.

 Ω

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ⊁

Proposition

Let $S = \langle A \rangle$ *where* $|A| < \infty$ *and let* $T < S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T$.

Moreover, the generating set X is finite if B(*A*, *T*) *is finite.*

 Ω

イロト イ押ト イヨト イヨ

Proposition

Let $S = \langle A \rangle$ *where* $|A| < \infty$ *and let* $T < S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T$.

Moreover, the generating set X is finite if B(*A*, *T*) *is finite.*

Step 1: Let $t \in T$ be arbitrary. Write $t = a_1 a_2 \cdots a_k$ where $a_i \in A$.

$$
t=a_1a_2\cdots a_k
$$

Proposition

Let $S = \langle A \rangle$ *where* $|A| < \infty$ *and let* $T < S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T$.

Moreover, the generating set X is finite if B(*A*, *T*) *is finite.*

Step 2: Let $\beta_1 = a_1 \cdots a_m$ be the shortest prefix that belongs to T, noting that:

$$
\beta_1=(a_1\cdots a_{m-1})a_m\in (S\setminus T)A\cap T=\mathcal{B}_r(A,T).
$$

$$
t=\underbrace{a_1a_2\cdots a_m}_{\beta_1}a_{m+1}\cdots a_k
$$

 \rightarrow \equiv \rightarrow \rightarrow

Proposition

Let $S = \langle A \rangle$ *where* $|A| < \infty$ *and let* $T < S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T$.

Moreover, the generating set X is finite if B(*A*, *T*) *is finite.*

Step 2: Let $\beta_1 = a_1 \cdots a_m$ be the shortest prefix that belongs to T, noting that:

$$
\beta_1=(a_1\cdots a_{m-1})a_m\in (S\setminus T)A\cap T=\mathcal{B}_r(A,T).
$$

$$
t=\beta_1a_{m+1}\cdots a_k
$$

 \rightarrow \equiv \rightarrow \rightarrow

Proposition

Let $S = \langle A \rangle$ *where* $|A| < \infty$ *and let* $T \leq S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T$.

Moreover, the generating set X is finite if B(*A*, *T*) *is finite.*

Step 3: If $a_{m+1} \cdots a_k \notin T$ then stop (in this case $t \in X$).

$$
t = \beta_1 \underbrace{a_{m+1} \cdots a_k}_{\in T}
$$

 Ω

 $4 \oplus 14 \oplus 14$

Proposition

Let $S = \langle A \rangle$ *where* $|A| < \infty$ *and let* $T < S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T$.

Moreover, the generating set X is finite if B(*A*, *T*) *is finite.*

Step 4: Otherwise, let β² be the shortest prefix of it that belongs to *T*. It exists because $a_{m+1} \cdots a_k \in T$. Again $\beta_2 \in \mathcal{B}_r(A, T)$.

$$
t=\beta_1\underbrace{a_{m+1}\cdots a_n}_{\beta_2}a_{n+1}\cdots a_k
$$

Proposition

Let $S = \langle A \rangle$ *where* $|A| < \infty$ *and let* $T < S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T$.

Moreover, the generating set X is finite if B(*A*, *T*) *is finite.*

Step 4: Otherwise, let β² be the shortest prefix of it that belongs to *T*. It exists because $a_{m+1} \cdots a_k \in T$. Again $\beta_2 \in \mathcal{B}_r(A, T)$.

$$
t = \beta_1 \beta_2 \underbrace{a_{n+1} \cdots a_k}_{\in T?}
$$

Proposition

Let $S = \langle A \rangle$ *where* $|A| < \infty$ *and let* $T < S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T$.

Moreover, the generating set X is finite if B(*A*, *T*) *is finite.*

Eventually: The tail of the word will either be empty or will belong to *S* \ *T*, and we stop.

$$
t = \beta_1 \beta_2 \beta_3 \cdots \overbrace{\beta_l \underbrace{a_r \cdots a_k}_{\notin \mathcal{T}}}
$$

Proposition

Let $S = \langle A \rangle$ *where* $|A| < \infty$ *and let* $T < S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T$.

Moreover, the generating set X is finite if B(*A*, *T*) *is finite.*

Corollary

If S is finitely generated and T has a finite boundary in S then T is finitely generated.

 Ω

イロト イ押 トイラト イラト

Proposition

Let $S = \langle A \rangle$ *where* $|A| < \infty$ *and let* $T < S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T$.

Moreover, the generating set X is finite if B(*A*, *T*) *is finite.*

Corollary

If S is finitely generated and T has a finite boundary in S then T is finitely generated.

Theorem

If S is finitely presented and T has a finite boundary in S then T is finitely presented.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

 \equiv

 QQQ

Robert Gray (University of Leeds) and BMC 2006 10 / 12

One-sided boundaries

Definition (Bruck–Reilly extension)

 $\mathcal M$ - monoid, $\theta\in\mathrm{End}(\mathcal M).$ $\mathcal{BR}(M,\theta)=\mathbb N^0\times M\times\mathbb N^0$ with:

$$
(m, a, n)(p, b, q) = (m - n + t, (a\theta^{t-n})(b\theta^{t-p}), q - p + t)
$$

where $t = max(n, p)$.

Proposition

 $\mathcal{S} = \mathcal{B}R(M, \theta)$ *finitely generated, and* $\mathcal{T} = \{(0, a, n) : a \in M, n \in \mathbb{N}^0\}.$

T has finite right boundary, T has infinite left boundary.

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

One-sided boundaries

Definition (Bruck–Reilly extension)

 $\mathcal M$ - monoid, $\theta\in\mathrm{End}(\mathcal M).$ $\mathcal{BR}(M,\theta)=\mathbb N^0\times M\times\mathbb N^0$ with:

$$
(m, a, n)(p, b, q) = (m - n + t, (a\theta^{t-n})(b\theta^{t-p}), q - p + t)
$$

where $t = max(n, p)$.

Proposition

 $\mathcal{S} = \mathcal{B}R(M, \theta)$ *finitely generated, and* $\mathcal{T} = \{(0, a, n) : a \in M, n \in \mathbb{N}^0\}.$

T has finite right boundary, T has infinite left boundary.

Example

Choose *M* and θ such that $BR(M, \theta)$ is finitely presented while *M* is finitely generated but not finitely presented. Then $T \leq BR(M, \theta)$ is finitely generated and has a finite right boundary, but is not finitely presented.

Strict boundaries and unitary subsemigroups

Problem. If *G* is an infinite group and *H* is a proper subgroup of *G* then $|\mathcal{B}(A, H)| < \infty \Leftrightarrow |H| < \infty$.

Definition (Strict boundary)

 $\mathcal{SB}_r(A, T) = \{t \in T : t = a_1 \cdots a_k \text{ and } a_1 \cdots a_i \notin T \text{ for } 1 \leq i < k\}.$

 Ω

イロト イ押ト イヨト イヨト ニヨ

Strict boundaries and unitary subsemigroups

Problem. If *G* is an infinite group and *H* is a proper subgroup of *G* then $|\mathcal{B}(A, H)| < \infty \Leftrightarrow |H| < \infty$.

Definition (Strict boundary)

$$
SB_r(A, T) = \{t \in T : t = a_1 \cdots a_k \text{ and } a_1 \cdots a_i \notin T \text{ for } 1 \leq i < k\}.
$$

Example

Let $S = \mathbb{Z} = \langle -1, 1 \rangle$ and let $T = 2\mathbb{Z}$. Then:

$$
\mathcal{SB}(A,T)=\{0,2,-2\}\subsetneq 2\mathbb{Z}=\mathcal{B}(A,T).
$$

Strict boundaries and unitary subsemigroups

Problem. If *G* is an infinite group and *H* is a proper subgroup of *G* then $|\mathcal{B}(A, H)| < \infty \Leftrightarrow |H| < \infty$.

Definition (Strict boundary)

$$
SB_r(A, T) = \{t \in T : t = a_1 \cdots a_k \text{ and } a_1 \cdots a_i \notin T \text{ for } 1 \leq i < k\}.
$$

Theorem

Let S be a finitely presented semigroup with T a subsemigroup of S. If T is left unitary and has a finite strict right boundary in S then T is finitely presented.

 Ω

イロト イ押 トイラト イラト