Semigroup presentations via boundaries in Cayley graphs¹

Robert Gray

University of Leeds

BMC, Newcastle 2006

BMC 2006

1/12

Robert Gray (University of Leeds)

^{&#}x27;(Research conducted while I was a research student at the University of St Andrews, under supervision of Nik Ruškuc.)

Semigroup presentations

Definition

- Presentation: $\langle A|R \rangle$ A alphabet (abstract generators) $R \subseteq A^+ \times A^+$ set of pairs of words (defining relations)
- Defines the semigroup S ≅ A⁺/η where η is the smallest congruence on A⁺ containing R.
- *S* is finitely generated if *A* can be chosen to be finite.
- S is finitely presented if A and R can both be chosen to be finite.

A (10) A (10)

Semigroup presentations

Definition

- Presentation: $\langle A|R \rangle$ A alphabet (abstract generators) $R \subseteq A^+ \times A^+$ set of pairs of words (defining relations)
- Defines the semigroup S ≅ A⁺/η where η is the smallest congruence on A⁺ containing R.
- *S* is finitely generated if *A* can be chosen to be finite.
- S is finitely presented if A and R can both be chosen to be finite.

Facts

- Every finite semigroup is finitely presented (Cayley table).
- Not every finitely generated semigroup is finitely presented

$$\langle a, b \mid ab^i a = aba \ (i = 2, 3, \ldots) \rangle$$

Presentations for subsemigroups

Let T be a subsemigroup of S.

In general...

- S finitely generated $\neq T$ finitely generated.
- **2** *S* finitely presented and *T* finitely generated \Rightarrow *T* finitely presented.

Presentations for subsemigroups

Let T be a subsemigroup of S.

In general...

- S finitely generated $\neq T$ finitely generated.
- S finitely presented and T finitely generated \Rightarrow T finitely presented.

Theorem (Jura (1978))

S finitely generated and $S \setminus T$ finite $\Rightarrow T$ finitely generated.

Theorem (Ruškuc (1998))

S finitely presented and $S \setminus T$ finite $\Rightarrow T$ finitely presented.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Presentations for subsemigroups

Let T be a subsemigroup of S.

In general...

- S finitely generated $\neq T$ finitely generated.
- S finitely presented and T finitely generated \Rightarrow T finitely presented.

Theorem (Jura (1978))

S finitely generated and $S \setminus T$ finite $\Rightarrow T$ finitely generated.

Theorem (Ruškuc (1998))

S finitely presented and $S \setminus T$ finite $\Rightarrow T$ finitely presented.

Question

Can the condition $|S \setminus T| < \infty$ be replaced by something weaker?

Cayley Graphs

Definition

Let *S* be a semigroup generated by a finite set *A*

The right Cayley graph $\Gamma_r(A, S)$ has:

- Vertices: elements of S.
- Edges: directed and labelled with letters from *A*.

$$s \xrightarrow{a} t \Leftrightarrow sa = t$$

Bicyclic monoid $B = \langle b, c | bc = 1 \rangle$

Semigroup boundaries

Definition

- Let *T* be a subsemigroup of *S*.
- The right boundary of *T* in *S* is the set of elements of *T* that *receive an edge from S* \ *T* in the right Cayley graph of *S*:

 $\mathcal{B}_r(A, T) = (S \setminus T)A \cap T.$

イロト イポト イヨト イヨ

Semigroup boundaries

Definition

- Let *T* be a subsemigroup of *S*.
- The right boundary of *T* in *S* is the set of elements of *T* that receive an edge from *S* \ *T* in the right Cayley graph of *S*:

 $\mathcal{B}_r(A, T) = (S \setminus T)A \cap T.$

 The left boundary of *T* in *S* is the set of elements of *T* that receive an edge from *S* \ *T* in the left Cayley graph of *S*:

$$\mathcal{B}_{l}(A, T) = A(S \setminus T) \cap T.$$

• The (two-sided) boundary is the union of the left and right boundaries:

$$\mathcal{B}(A, T) = \mathcal{B}_{l}(A, T) \cup \mathcal{B}_{r}(A, T).$$

< ロ > < 同 > < 回 > < 回 >

A straightforward example

Example (Free monoid on two generators)

• $S = \{a, b\}^*$, $T = \{$ words that begin with the letter $a\}$.

A straightforward example

Example (Free monoid on two generators)

• $S = \{a, b\}^*$, $T = \{$ words that begin with the letter $a\}$.

ヘロト 人間 ト 人 ヨ ト 人 ヨ

Basic properties

Proposition (Invariance)

Let A and B be two finite generating sets for a semigroup S. Then $\mathcal{B}_r(A, T)$ is finite if and only if $\mathcal{B}_r(B, T)$ is finite. (The same for left and two-sided.)

Proposition

The following conditions are all sufficient for T to have a finite boundary.

$$|S \setminus T| < \infty$$

$${f 3}$$
 $S\setminus T$ is a two-sided ideal of S

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

Let *S* be the semigroup with set of generators $A = \{a\} \cup B \cup C \cup \{0\}$, where *B* and *C* are finite alphabets, and relations *R* given by:

$$egin{aligned} &ab=b, \quad ba=0 & b\in B\ ∾=0, \quad ca=c & c\in C\ &x0=0x=0 & x\in A. \end{aligned}$$

Let $T = \langle A \setminus a \rangle$. Then:

Example

Let *S* be the semigroup with set of generators $A = \{a\} \cup B \cup C \cup \{0\}$, where *B* and *C* are finite alphabets, and relations *R* given by:

ab = b,	<i>ba</i> = 0	$m{b}\inm{B}$
<i>ac</i> = 0,	ca = c	$m{c}\inm{C}$
x0 = 0x = 0		$x \in A$.

Let $T = \langle A \setminus a \rangle$. Then:

(i) $N = \{0\} \cup \{a^i : i \in \mathbb{N}\} \cup B \cup C \cup BC \cup CB \cup BCB \cup CBC \cup \dots$ is a set of normal forms for *S*;

Example

Let *S* be the semigroup with set of generators $A = \{a\} \cup B \cup C \cup \{0\}$, where *B* and *C* are finite alphabets, and relations *R* given by:

ab = b,	<i>ba</i> = 0	$m{b}\inm{B}$
<i>ac</i> = 0,	ca = c	$m{c}\inm{C}$
x0 = 0x = 0		$x \in A$.

Let $T = \langle A \setminus a \rangle$. Then:

- (i) $N = \{0\} \cup \{a^i : i \in \mathbb{N}\} \cup B \cup C \cup BC \cup CB \cup BCB \cup CBC \cup \dots$ is a set of normal forms for *S*;
- (ii) $\mathcal{B}_r(A, T) = \{a^i : i \in \mathbb{N}^0\}A \cap T = B \cup \{0\};$
- (iii) $\mathcal{B}_{l}(A,T) = A\{a^{i}: i \in \mathbb{N}^{0}\} \cap T = C \cup \{0\};$

Example

Let *S* be the semigroup with set of generators $A = \{a\} \cup B \cup C \cup \{0\}$, where *B* and *C* are finite alphabets, and relations *R* given by:

ab = b,	<i>ba</i> = 0	$m{b}\inm{B}$
<i>ac</i> = 0,	ca = c	$m{c}\inm{C}$
x0 = 0x = 0		$x \in A$.

Let $T = \langle A \setminus a \rangle$. Then:

(i) $N = \{0\} \cup \{a^i : i \in \mathbb{N}\} \cup B \cup C \cup BC \cup CB \cup BCB \cup CBC \cup \ldots$ is a set of normal forms for *S*;

(ii)
$$\mathcal{B}_r(A, T) = \{a^i : i \in \mathbb{N}^0\}A \cap T = B \cup \{0\};$$

(iii)
$$\mathcal{B}_l(A,T) = A\{a^i : i \in \mathbb{N}^0\} \cap T = C \cup \{0\};$$

- (iv) S and T are both infinite;
- (v) $S \setminus T$ is infinite.

Unexpected behavior

Example (Non-transitivity)

Let S be the semigroup (with zero) defined by

$$\langle a, b, c \mid ba = 0, cb = 0, ca = 0 \rangle$$
.

- Let $T = \langle a, b, bc \rangle$ and $K = \langle a, abc \rangle$. Then $K \leq T \leq S$:
 - K has finite boundary in T
 - T has finite boundary in S
 - K has infinite boundary in S.

Note

This contrasts with finite complement subsemigroups where the property is obviously transitive.

イロト イヨト イヨト イヨト

Proposition

Let $S = \langle A \rangle$ where $|A| < \infty$ and let $T \leq S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T.$

Moreover, the generating set X is finite if $\mathcal{B}(A, T)$ is finite.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Proposition

Let $S = \langle A \rangle$ where $|A| < \infty$ and let $T \leq S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T.$

Moreover, the generating set X is finite if $\mathcal{B}(A, T)$ is finite.

Step 1: Let $t \in T$ be arbitrary. Write $t = a_1 a_2 \cdots a_k$ where $a_i \in A$.

$$t = a_1 a_2 \cdots a_k$$

A (1) > A (2) > A

Proposition

Let $S = \langle A \rangle$ where $|A| < \infty$ and let $T \leq S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T.$

Moreover, the generating set X is finite if $\mathcal{B}(A, T)$ is finite.

Step 2: Let $\beta_1 = a_1 \cdots a_m$ be the shortest prefix that belongs to *T*, noting that:

$$\beta_1 = (a_1 \cdots a_{m-1})a_m \in (S \setminus T)A \cap T = \mathcal{B}_r(A, T).$$

$$t = \underbrace{a_1 a_2 \cdots a_m}_{\beta_1} a_{m+1} \cdots a_k$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

Let $S = \langle A \rangle$ where $|A| < \infty$ and let $T \leq S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T.$

Moreover, the generating set X is finite if $\mathcal{B}(A, T)$ is finite.

Step 2: Let $\beta_1 = a_1 \cdots a_m$ be the shortest prefix that belongs to *T*, noting that:

$$\beta_1 = (a_1 \cdots a_{m-1})a_m \in (S \setminus T)A \cap T = \mathcal{B}_r(A, T).$$

$$t=\beta_1a_{m+1}\cdots a_k$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Proposition

Let $S = \langle A \rangle$ where $|A| < \infty$ and let $T \leq S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T.$

Moreover, the generating set X is finite if $\mathcal{B}(A, T)$ is finite.

Step 3: If $a_{m+1} \cdots a_k \notin T$ then stop (in this case $t \in X$).

$$t = \beta_1 \underbrace{a_{m+1} \cdots a_k}_{\in T?}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Proposition

Let $S = \langle A \rangle$ where $|A| < \infty$ and let $T \leq S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T.$

Moreover, the generating set X is finite if $\mathcal{B}(A, T)$ is finite.

Step 4: Otherwise, let β_2 be the shortest prefix of it that belongs to *T*. It exists because $a_{m+1} \cdots a_k \in T$. Again $\beta_2 \in \mathcal{B}_r(A, T)$.

$$t = \beta_1 \underbrace{a_{m+1} \cdots a_n}_{\beta_2} a_{n+1} \cdots a_k$$

A (10) A (10)

Proposition

Let $S = \langle A \rangle$ where $|A| < \infty$ and let $T \leq S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T.$

Moreover, the generating set X is finite if $\mathcal{B}(A, T)$ is finite.

Step 4: Otherwise, let β_2 be the shortest prefix of it that belongs to *T*. It exists because $a_{m+1} \cdots a_k \in T$. Again $\beta_2 \in \mathcal{B}_r(A, T)$.

$$t = \beta_1 \beta_2 \underbrace{a_{n+1} \cdots a_k}_{\in T?}$$

A (10) A (10)

Proposition

Let $S = \langle A \rangle$ where $|A| < \infty$ and let $T \leq S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T.$

Moreover, the generating set X is finite if $\mathcal{B}(A, T)$ is finite.

Eventually: The tail of the word will either be empty or will belong to $S \setminus T$, and we stop.

$$t = \beta_1 \beta_2 \beta_3 \cdots \overrightarrow{\beta_l \underbrace{a_r \cdots a_k}_{\notin T}}$$

A (10) A (10) A (10)

Proposition

Let $S = \langle A \rangle$ where $|A| < \infty$ and let $T \leq S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T.$

Moreover, the generating set X is finite if $\mathcal{B}(A, T)$ is finite.

Corollary

If S is finitely generated and T has a finite boundary in S then T is finitely generated.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

Let $S = \langle A \rangle$ where $|A| < \infty$ and let $T \leq S$. Then T is generated by:

 $X = \mathcal{B}_r(A, T)(S \setminus T)^1 \cap T.$

Moreover, the generating set X is finite if $\mathcal{B}(A, T)$ is finite.

Corollary

If S is finitely generated and T has a finite boundary in S then T is finitely generated.

Theorem

If S is finitely presented and T has a finite boundary in S then T is finitely presented.

э

10/12

BMC 2006

Robert Gray (University of Leeds)

One-sided boundaries

Definition (Bruck-Reilly extension)

M - monoid, $\theta \in \text{End}(M)$. $BR(M, \theta) = \mathbb{N}^0 \times M \times \mathbb{N}^0$ with:

$$(m, a, n)(p, b, q) = (m - n + t, (a\theta^{t-n})(b\theta^{t-p}), q - p + t)$$

where $t = \max(n, p)$.

Proposition

 $S = BR(M, \theta)$ finitely generated, and $T = \{(0, a, n) : a \in M, n \in \mathbb{N}^0\}.$

• T has finite right boundary, T has infinite left boundary.

One-sided boundaries

Definition (Bruck-Reilly extension)

M - monoid, $\theta \in \text{End}(M)$. $BR(M, \theta) = \mathbb{N}^0 \times M \times \mathbb{N}^0$ with:

$$(m, a, n)(p, b, q) = (m - n + t, (a\theta^{t-n})(b\theta^{t-p}), q - p + t)$$

where $t = \max(n, p)$.

Proposition

 $S = BR(M, \theta)$ finitely generated, and $T = \{(0, a, n) : a \in M, n \in \mathbb{N}^0\}.$

• T has finite right boundary, T has infinite left boundary.

Example

Choose *M* and θ such that $BR(M, \theta)$ is finitely presented while *M* is finitely generated but not finitely presented. Then $T \leq BR(M, \theta)$ is finitely generated and has a finite right boundary, but is not finitely presented.

Strict boundaries and unitary subsemigroups

Problem. If *G* is an infinite group and *H* is a proper subgroup of *G* then $|\mathcal{B}(A, H)| < \infty \Leftrightarrow |H| < \infty$.

Definition (Strict boundary)

 $\mathcal{SB}_r(A, T) = \{t \in T : t = a_1 \cdots a_k \text{ and } a_1 \cdots a_i \notin T \text{ for } 1 \leq i < k\}.$

Strict boundaries and unitary subsemigroups

Problem. If *G* is an infinite group and *H* is a proper subgroup of *G* then $|\mathcal{B}(A, H)| < \infty \Leftrightarrow |H| < \infty$.

Definition (Strict boundary)

$$\mathcal{SB}_r(A, T) = \{t \in T : t = a_1 \cdots a_k \text{ and } a_1 \cdots a_i \notin T \text{ for } 1 \leq i < k\}.$$

Example

Let $S = \mathbb{Z} = \langle -1, 1 \rangle$ and let $T = 2\mathbb{Z}$. Then:

$$\mathcal{SB}(A,T) = \{0,2,-2\} \subsetneq 2\mathbb{Z} = \mathcal{B}(A,T).$$

Strict boundaries and unitary subsemigroups

Problem. If *G* is an infinite group and *H* is a proper subgroup of *G* then $|\mathcal{B}(A, H)| < \infty \Leftrightarrow |H| < \infty$.

Definition (Strict boundary)

$$\mathcal{SB}_r(A, T) = \{t \in T : t = a_1 \cdots a_k \text{ and } a_1 \cdots a_i \notin T \text{ for } 1 \leq i < k\}.$$

Theorem

Let S be a finitely presented semigroup with T a subsemigroup of S. If T is left unitary and has a finite strict right boundary in S then T is finitely presented.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >