Locally-finite connected-homogeneous digraphs

Robert Gray

joint work with R Möller (University of Iceland)

Groups and infinite graphs Vienna, August 2008

Symmetry properties for graphs

- \triangleright There are varying amounts of symmetry that a graph can display.
- \triangleright Roughly speaking, the more symmetry a graph has the larger its automorphism group will be (and vice versa).

Examples

- Γ graph, *V*Γ vertex set
	- ^I Γ is vertex-transitive if Aut Γ acts transitively on *V*Γ.
		- \triangleright Cayley graphs of groups are vertex transitive.

Symmetry properties for graphs

- \triangleright There are varying amounts of symmetry that a graph can display.
- \triangleright Roughly speaking, the more symmetry a graph has the larger its automorphism group will be (and vice versa).

Examples

Γ - graph, *V*Γ - vertex set

- ^I Γ is vertex-transitive if Aut Γ acts transitively on *V*Γ.
	- \triangleright Cayley graphs of groups are vertex transitive.
- \triangleright Other stronger conditions have been considered:
	- \blacktriangleright edge-transitive, arc-transitive, *k*-arc-transitive (Tutte (1947))
	- \blacktriangleright distance-transitive (Biggs and Smith (1971))
	- ► homogeneous, *k*-homogeneous (Fraïssé (1953))

 \triangleright Concepts like this arise naturally in the theory of permutation groups.

Classification problems

 \triangleright P - a symmetry property of graphs

Problem

Classify those graphs Γ satisfying property \mathcal{P} .

- \triangleright Various restrictions can be placed on Γ
	- e.g. we may suppose that Γ is:
		- \blacktriangleright finite
		- \blacktriangleright infinite but locally-finite
		- \blacktriangleright countably infinite
		- \blacktriangleright arbitrary
- In the infinite locally-finite case the number of ends that the graph has plays an important role.

Ends of a graphs

Definition

The number of ends of a graph is the least upper bound (possibly ∞) of the number of infinite connected components that can be obtained by removing finitely many edges.

Intuitively the number of ends corresponds to the number of "ways of going to infinity".

Theorem (Diestel, Jung, Möller (1993))

A connected vertex-transitive graph has either 1, 2 *or* ∞ *many ends.*

Examples: A grid, a tree and a line

Cutting up graphs

Definition (Cuts)

A set $c \subseteq V\Gamma$ of vertices is called a cut if *c* and its complement c^* are both infinite and

$$
\delta c = \{ e \in E\Gamma : \text{one vertex of } e \text{ lies in } c \text{ and one in } c^* \}
$$

is finite.

Theorem (Dunwoody (1982))

Any infinite connected graph with more than one end has a cut d ⊆ *V*Γ *such that for all* $g \in$ Aut Γ *at least one of the following holds*

$$
d \subseteq gd
$$
, $d \subseteq gd^*$, $d^* \subseteq gd$, or $d^* \subseteq gd^*$.

Applications of Dunwoody's theorem

 \triangleright Dunwoody's theorem has been usefully applied in the study of locally-finite graphs satisfying symmetry conditions.

Examples

 \triangleright Macpherson (1982) - classification of infinite locally-finite distance-transitive graphs

Applications of Dunwoody's theorem

 \triangleright Dunwoody's theorem has been usefully applied in the study of locally-finite graphs satisfying symmetry conditions.

Examples

 \triangleright Macpherson (1982) - classification of infinite locally-finite distance-transitive graphs

Let Γ be a locally finite connected graph with more than one end.

- \triangleright Möller (1992) If Γ is 2-distance transitive then Γ is *k*-distance transitive for all $k \in \mathbb{N}$.
- **IDED** Thomassen–Woess (1993) If Γ is 2-arc transitive then Γ is a regular tree.
- **F** Thomassen–Woess (1993) If Γ is 1-arc transitive and all vertices have degree r , where r is a prime, then Γ is a regular tree.

Digraphs with symmetry

D - a digraph, $ED \subseteq VD \times VD$ - set of arcs of *D* (no loops or two-directional arcs \leftrightarrow)

Definition

Number of ends of $D :=$ the number of ends of the underlying undirected graph of *D*.

- \triangleright Seifter (2007) investigated the structure of infinite locally-finite transitive digraphs with > 1 end
	- \blacktriangleright They are far less "sensitive" to symmetry conditions than undirected graphs.
	- Even with a seemingly very strong condition called high-arc-transitivity they can have very rich structure.

Connected-homogeneity

Definition

A digraph *D* is called connected-homogeneous if any isomorphism between finite connected induced subdigraphs of *D* extends to an automorphism.

Example. $D =$ infinite directed line (i.e. \mathbb{Z} with arcs $i \rightarrow i + 1$)

Connected-homogeneity

Definition

A digraph *D* is called connected-homogeneous if any isomorphism between finite connected induced subdigraphs of *D* extends to an automorphism.

Example. $D =$ infinite directed line (i.e. \mathbb{Z} with arcs $i \rightarrow i + 1$)

Problem. Classify the countable connected-homogeneous digraphs.

A solution to this problem would complete the following table:

Subproblem. Classify the connected-homogeneous digraphs that are locally-finite and have more than one end.

The case that a triangle embeds

Theorem (RG & Möller (2008))

Let D be a connected locally-finite digraph with more than one end, and suppose that D embeds a triangle.

Then D is connected-homogeneous if and only if it is isomorphic to a digraph built from directed triangles in the following way:

Highly arc-transitive digraphs

Definition

A *k*-arc in *D* is a sequence (x_0, \ldots, x_k) of vertices with $x_i \rightarrow x_{i+1}$ (and $x_{i-1} \neq x_{i+1}$).

A digraph *D* is highly-arc-transitive if Aut *D* is transitive on the set of *k*-arcs of *D* for every natural number *k*.

 \triangleright Cameron, Praeger, and Wormald (1993) - carried out an extensive study of the class of highly-arc-transitive digraphs.

Proposition (RG & Möller (2008))

Let *D* be a triangle-free locally-finite digraph with more than one end. If *D* is connected-homogeneous then *D* is highly-arc-transitive.

Directed regular trees

Directed regular trees

Other tree-like examples exist.

Constructed by gluing together certain bipartite graphs.

Definition

The set of descendants $\text{desc}(u)$ of a vertex *u* is the set of all vertices *v* such that there is a directed path from *u* to *v*.

In this example $\text{desc}(u)$ is a tree for every vertex *u*.

Definition

The reachability digraph $\Delta(D)$ of *D* is the subdigraph induced by the set of all arcs reachable by an alternating walk beginning from an arc.

In this example $\Delta(D)$ is bipartite and is isomorphic to a 6-cycle.

- \triangleright For arbitrary locally finite highly-arc-transitive digraphs
	- \blacktriangleright desc(*u*) need not be a tree
	- it is an open question as to whether $\Delta(D)$ is bipartite

Theorem (RG & Möller (2008))

Let *D* be a triangle-free locally-finite connected-homogeneous digraph with infinitely many ends. Then

- \blacktriangleright desc(*u*) is a tree for all $u \in VD$
- \triangleright $\Delta(D)$ is a bipartite graph

- \triangleright For arbitrary locally finite highly-arc-transitive digraphs
	- \blacktriangleright desc(*u*) need not be a tree
	- it is an open question as to whether $\Delta(D)$ is bipartite

Theorem (RG & Möller (2008))

Let *D* be a triangle-free locally-finite connected-homogeneous digraph with infinitely many ends. Then

- \blacktriangleright desc(*u*) is a tree for all $u \in VD$
- \triangleright $\Delta(D)$ is a bipartite graph
- \triangleright Specifically, $\Delta(D)$ is isomorphic to one of:
	- ► infinite semiregular tree $T_{a,b}$ ($a, b \in \mathbb{N}$)
	- ► cycle C_{2m} $(m > 4)$
	- ► complete bipartite graph $K_{m,n}$ ($m, n \in \mathbb{N}$ with $m > 2$ or $n > 2$)
	- ► complement of a perfect matching CP_n for some $n \geq 3$ (i.e. the complete bipartite graph $K_{n,n}$ with a matching removed)
- ▶ Proof. Uses Dunwoody's theorem, structure trees, and results from Seifter (2007).

- \triangleright For arbitrary locally finite highly-arc-transitive digraphs
	- \blacktriangleright desc(*u*) need not be a tree
	- it is an open question as to whether $\Delta(D)$ is bipartite

Theorem (RG & Möller (2008))

Let *D* be a triangle-free locally-finite connected-homogeneous digraph with infinitely many ends. Then

- \blacktriangleright desc(*u*) is a tree for all $u \in \text{VD}$
- \triangleright $\Delta(D)$ is a bipartite graph
- \triangleright Specifically, $\Delta(D)$ is isomorphic to one of:
	- ► infinite semiregular tree $T_{a,b}$ $(a, b \in \mathbb{N})$
	- ► cycle C_{2m} $(m > 4)$
	- ► complete bipartite graph $K_{m,n}$ $(m, n \in \mathbb{N}$ with $m \ge 2$ or $n \ge 2$)
	- **Exercise Section** complement of a perfect matching CP_n for some $n \geq 3$ (i.e. the complete bipartite graph $K_{n,n}$ with a matching removed)
- \triangleright But do all of these potential reachability graphs actually arise in examples?

CPW's universal covering construction.

► Let Δ be one of the following:

- **►** Then there exists a connected-homogeneous digraph $DL(\Delta)$ with reachability graph Δ .
- \triangleright *DL*(Δ) is constructed by gluing together copies of Δ in such a way that
	- \triangleright any two copies of Δ intersect in at most one vertex
	- In the only cycles in *D* are those that occur in the copies of Δ
- This construction was introduced by Cameron, Praeger, and Wormald (1993) during their study of highly-arc-transitive digraphs.

CPW's universal covering construction example

► The digraph $DL(\Delta)$ where $\Delta = C_6$ is a 6-cycle.

► And "most" examples actually arise in this way.

Theorem (RG & Möller (2008))

Let D be a connected triangle-free locally-finite connected-homogeneous digraph with infinitely many ends, and with $\Delta(D)$ *not isomorphic to* $K_{2,2}$ *or to the complement of a perfect matching.*

Then $D \cong DL(\Delta)$ *, the digraph obtained from the above CPW universal covering construction.*

In particular, in these cases D is uniquely determined by its reachability digraph $\Delta(D)$ *.*

 \triangleright This just leaves the cases that Δ is isomorphic to $K_{2,2}$ or to the complement of a perfect matching.

- \blacktriangleright Malnič, Marušič, Seifter, and Zgrablić (2002)
	- \blacktriangleright introduced a new family of highly-arc-transitive digraphs
	- \blacktriangleright answered an open question about homomorphisms onto *Z*
- \blacktriangleright The original construction involved gluing together cycles $C_{2m}(m > 3)$.

An MMSZ digraph *D* with $\Delta(D) \cong$ *CP*³ complement of perfect matching.

- \blacktriangleright Malnič, Marušič, Seifter, and Zgrablić (2002)
	- \blacktriangleright introduced a new family of highly-arc-transitive digraphs
	- \blacktriangleright answered an open question about homomorphisms onto *Z*
- \blacktriangleright The original construction involved gluing together cycles $C_{2m}(m > 3)$.

An MMSZ digraph *D* with $\Delta(D) \cong$ *CP*³ complement of perfect matching.

- \blacktriangleright Malnič, Marušič, Seifter, and Zgrablić (2002)
	- \blacktriangleright introduced a new family of highly-arc-transitive digraphs
	- \blacktriangleright answered an open question about homomorphisms onto *Z*
- \blacktriangleright The original construction involved gluing together cycles $C_{2m}(m \ge 3)$.

An MMSZ digraph *D* with $\Delta(D) \cong$ *CP*³ complement of perfect matching.

- \blacktriangleright Malnič, Marušič, Seifter, and Zgrablić (2002)
	- \blacktriangleright introduced a new family of highly-arc-transitive digraphs
	- \blacktriangleright answered an open question about homomorphisms onto *Z*
- \triangleright Carrying out their construction with any complement of perfect matching $CP_m(m \geq 3)$ gives a connected-homogeneous digraph.

An MMSZ digraph *D* with $\Delta(D) \cong$ *CP*³ complement of perfect matching.

- \blacktriangleright Malnič, Marušič, Seifter, and Zgrablić (2002)
	- \blacktriangleright introduced a new family of highly-arc-transitive digraphs
	- \blacktriangleright answered an open question about homomorphisms onto *Z*
- \triangleright Carrying out their construction with any complement of perfect matching $CP_m(m \geq 3)$ gives a connected-homogeneous digraph.
- \triangleright A generalisation of their construction gives further examples.

A generalised MMSZ digraph

Theorem (RG & Möller (2008))

Let D be a connected triangle-free locally-finite connected-homogeneous digraph with more than one end.

If ∆(*D*) *is isomorphic to the complement of a perfect matching then either* (i) *D is obtained from the CPW construction or* (ii) *D is a generalised MMSZ digraph*

In particular, for any complement of perfect matching Δ there are infinitely many non-isomorphic *D* with $\Delta(D) \cong \Delta$.

$\Delta \cong K_{2,2}$ - the problem case

D - connected triangle-free locally-finite connected-homogeneous digraph with more than one end.

Suppose $\Delta(D) \cong K_{2,2}$

- \blacktriangleright Known examples
	- \blacktriangleright CPW example, and
	- \blacktriangleright generalised MMSZ examples
- In But there are other examples in addition to these (too complicated to go into here :-().
- \triangleright This is the only case where the infinitely-ended classification is still incomplete.

Concluding remarks

 \triangleright We have results for the 2-ended case, e.g. $\Delta(D) \cong K_{n,n}$.

Still to do

 \triangleright Complete the classification by determining all examples whose reachability graph is $K_{2,2}$.

And then

- \blacktriangleright Extend the result to:
	- \triangleright non-locally finite digraphs
	- \triangleright one-ended digraphs
- \triangleright Generalise results to locally-finite highly-arc-transitive digraphs with more than one end.
	- In particular prove that for such digraphs $\Delta(D)$ is always bipartite.