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Definition and examples
Definition

A semigroup is a pair S = (S, ) where Sis a set and - is a binary
operation satisfying the associative law.

Examples

@ Groups (are semigroups that satisfy (vac S) aS=S & Sa=S).
@ Subsemigroups of groups (e.g. (N, +) < (Z, +)).
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Definition and examples
Definition

A semigroup is a pair S = (S, ) where Sis a set and - is a binary
operation satisfying the associative law.

Examples
@ Groups (are semigroups that satisfy (Vae S) aS=S & Sa=S).
@ Subsemigroups of groups (e.g. (N, +) < (Z,+)).
@ Right and left zero semigroups
(x,yeS)xy=y, (¥x,yeSxy=x
@ Rectangular bands
(Vx,y € S) xyx = x.
Every rectangular band is isomorphic to a semigroup A x B,
where A and B are non-empty sets, with multiplication:
(a1, b1)(ae, b2) = (a1, bo).
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Semigroups of transformations

Let X be a set. The full transformation semigroup Ty is the semigroup
of all maps from X to X under composition. When | X| = n we write
TX = Tn.

@ Pyx (partial transformation semigroup): The semigroup of all partial
maps of X. For example in Py:

1.2 3 4\(1 2 3 4\ (1 2 3 4
2 2 — 1)\- 433/ \4 4 - )
@ [/x (symmetric inverse semigroup): The semigroup of all partial
one-one maps of X. For example in Iy:

12 3 4\/1 23 4\ (12 3 4
4 2 - 1)\- 13 2)7\21 - )
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Endomorphism monoids

Given a mathematical structure M the set of endomorphisms of M
(denoted End(M)) forms a monoid (semigroup with identity).

@ When M = X is simply a set (no structure) we have End(M) = Tx
the full transformation semigroup.
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Endomorphism monoids

Given a mathematical structure M the set of endomorphisms of M
(denoted End(M)) forms a monoid (semigroup with identity).

@ When M = X is simply a set (no structure) we have End(M) = Ty

the full transformation semigroup.

@ When M = V an n-dimensional vector space over GF(q) then
End(M) = GLS(n, q) the general linear semigroup of all n x n
matrices over GF(q).

@ When M =Y, = ({1,...,n}, <) (an n-element chain) then
End(M) is isomorphic to the semigroup of order preserving
transformations:

Oh={acTh:(Vx,y e Xp) x <y = xa < ya}.
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Generating sets

Given A C S let (A) denote the subsemigroup of S generated by the

Definition
set A. J

Question. Given a semigroup S how many elements do we need in
order to generate S?

Definition
We use rank(S) to denote the minimum cardinality of a generating set
for a semigroup S:

rank(S) = min{|A| : AC S & (A) = S}.
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Small generating sets

Example
Groups
@ rank(Zp) = 1,rank(Sy) = 2, rank(A,) = 2, rank(Dz,) = 2,
rank(Qg) =
Semigroups
@ k element left (right) zero semigroups have rank k.
@ rank(T,) = 3 (a transposition, n-cycle and one transformation «
with [im(a)|=n—1).
@ rank(Pp) = 4 (partial transformations).
@ rank(/p) = 3 (symmetric inverse semigroup).
@ rank(GLS(n, g)) = 3 (general linear semigroup).
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Ideals and singular mappings

The ranks of the proper two-sided ideals of each of the above
semigroups of transformations have been considered.

Semigroup

Author(s)

Full transformation semigroup

Gomes & Howie (1987)
Howie & McFadden (1990)

Partial transformation semigroup

Garba (1994)

Symmetric inverse semigroup

Garba (1994)
Gomes & Howie (1987)

Order preserving transformations

Gomes & Howie (1992)
Yang (1998)

General linear semigroup

Dawlings (1982)
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The main problem

The “building blocks” of arbitrary finite semigroups are the (so called)
completely 0-simple semigroups.

For each of the examples above the problem reduces to that of
determining the rank of a corresponding completely 0-simple
semigroup.

Question. Can we find an expression for the rank of an arbitrary finite
completely 0-simple semigroup?
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The main problem

The “building blocks” of arbitrary finite semigroups are the (so called)
completely 0-simple semigroups.

For each of the examples above the problem reduces to that of
determining the rank of a corresponding completely 0-simple
semigroup.

Question. Can we find an expression for the rank of an arbitrary finite
completely 0-simple semigroup?

Such a result could be regarded as an analogue in semigroup theory
of the following result for groups.

Proposition
Every non-abelian finite simple group G satisfies rank(G) = 2. J

Proof. Follows from the classification of finite simple groups. Ol
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Completely 0-simple semigroups

Definition
Let T be a subsemigroup of S.
@ If ST C T then T is called a left ideal.
@ If TS C T then T is called a right ideal.
@ T is called a (two-sided) ideal if it is both a left and a right ideal.

v

Definition
A semigroup is called simple if it has no proper ideals.

A semigroup S with 0 is called 0-simple if {0} and S are its only ideals,
and is called completely 0-simple if it is 0-simple and is group bound.

v

Fact. Every finite 0-simple semigroup is completely 0-simple.
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Green’s relations

S - semigroup, x,y € S

xRy < xS'=ySs'
xLy < S'x=8'y
xJy < S'x8'=S8"ys'

@ D=RoL=LoR(=JT)
@ H=RNL
° J < J, & S'xS' C SyS!
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Green’s relations in T,

n T, - full transformation semigroup,
IR a,/B S Tn
Lr ' 1Im( o)1= n=1
alB <« im(a)=im(p)
‘ aRpB < ker(a) = ker(f)
BON agf & [im(a)] = [im(3),
/ Jr={acT,:|im) =r}
S(r) 4 I, Im( o)l=r
\\ The ideals of Ty:
- B K(n,r) = {a€ Ty:lim(a) <r}
T i = JU---Uds.

Im( o) l=1
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Example: the semigroup Sing; = T3\ S3

{3}, {1,2}
{1}3,{2,3}
{2}, {1,3}

{1,2,3}

{1,2}

{2,3}

{1,3}

[1,1,2],[2,2,1]

2,2,3],[3,3,2]

[1,1,3],[3,3,1]

1,2,2],[2,1,1]

[2,3,3],[3,2,2]

[1,3,3],[3,1,1]

1,2,1],[2,1,2]

[2,8,2],[3,2,3]

[1,3,1],[3,1,3]

{1

|
{2}

{3}

‘ [1,1,1] ‘ 2,2,2] ‘ [3,3,3] ‘

In this case the dimensions of the maximal 7-class are given by:

S(3,2) = 3,

Robert Gray (University of Leeds)
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Principal factors

Definition (Principal factor)
Let J be some J-class of a semigroup S. Then the principal factor of
S corresponding to J is the set J* = J U {0} with multiplication

Srfo st if s,t,sted
10 otherwise.

Fact. The semigroup J* is either a semigroup with zero multiplication
or is a 0-simple semigroup.
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Rees matrix semigroups

Definition
@ G-agroup; [,A-non-empty index sets.
@ P = (p,) a regular |\ x |I| matrix over GU {0}.
@ S=(Ix G x A)u{0} with multiplication

. . _ [ (,gpyhp) o Py #0
(Iag7 )‘)(I’ h7 N) - { 0 . otherwise

(1,9,A)0 = 0(i, g, \) = 00 = 0.

Theorem (The Rees Theorem)

A semigroup S is completely 0-simple if and only if it is isomorphic to
MO[G; I, \; P] where G is a group and P is regular.
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Rees matrix semigroups

The original problem:

Problem. Find an expression for the rank of an arbitrary finite
completely 0-simple semigroup.

As a consequence of the Rees Theorem this reduces to:

Problem. Find a formula (in terms of G, /, A and P) for the rank of an
arbitrary finite Rees matrix semigroup.
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A special case

A semigroup is called combinatorial if its maximal subgroups are all

trivial. The combinatorial completely 0-simple semigroups are called
rectangular 0-bands.

Definition (Rectangular 0-band)
o /={1,....m},A={1,...,n}
@ P = (p,) a regular A x | matrix over {0, 1}.
@ S = (/xA)u{0} with multiplication

N B () I VR . PN
(17 )‘)(Inu’) - { 0 - otherwise ’ (Ia )\)0 - O(I, )‘) =00=0.

Associated with every S = MO[G; I, A; P] is a rectangular 0-band
T = S/H (associated homomorphismis i : (i, g, A\) — (i, \)).
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Rectangular 0-band example

- O = 0O
o = O =

(171)(273) = (1a3) Sincep12:1
(2,3)(1,1) = 0 since p31 =0

Robert Gray (University of Leeds) 18/38



Rectangular 0-bands

Theorem (RG, Ruskuc (2005))
Let S be an m x n rectangular 0-band. Then

rank(S) = max(m, n).

Proof. By induction on the dimensions of S, using regularity. O

Robert Gray (University of Leeds) 19/38



Rectangular 0-bands

Theorem (RG, RusSkuc (2005))
Let S be an m x n rectangular 0-band. Then

rank(S) = max(m, n).

Proof. By induction on the dimensions of S, using regularity. O

Corollary

Let S = MO[G; I, \; P] be a finite completely 0-simple semigroup. If S
is idempotent generated then rank(S) = max(|/|, |A|).

Proof. Let T = St. Let (A) = T with |A| = max(|/|, |A|). Let Bbe a
transversal of the H-classes A;~'. Then (B) N H # & for every H-class
H of S. Therefore (B) D (E(S)) = S. O
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Application

Recall that the proper ideals of T, are given by
K(n,r)y={a e Ty:|im(a)| <r}where1 <r<n.

Lemma. K(n,r) is idempotent generated.

Lemma. K(n, r) is generated by the elements in its unique maximal
J-class Jr.

Corollary (Howie and McFadden (1990))
Letne Nandlet1 <r < n. Then:

rank(K(n,r)) = S(n,r).

Proof: rank(K(n, r)) = rank(J;") = max(S(n,r), (7)) = S(n,r). O
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Associated graphs: '(S)

Definition Given S = MO[G; I, A; P] we let ['(S) denote the graph with
set of vertices {(i,\) € Ix A : H;y is agroup} and (i, \) adjacent to (j, )
if and only if i = jor A = p.

We say S = MO[G; I, A; P] is connected if ['(S) is connected.

Example Connected.

u]
]
I
ul
it
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Associated graphs: '(S)

Definition Given S = MO[G; I, A; P] we let ['(S) denote the graph with
set of vertices {(i,\) € Ix A : H;y is agroup} and (i, \) adjacent to (j, )
if and only if i = jor A = p.

We say S = MO[G; I, A; P] is connected if ['(S) is connected.

Example Disconnected.
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Products of idempotents
The set of idempotents of S is

E(S) ={(i,pri ", A) s i €1, A€ A, pyi # 0}
Provided p,; # 0 we have:

(i’ p)‘i_1 ’ )\)(]’ pﬂj_1 ’ M) = (Ia pAi_1p>\ijj_1 ) :u)

which can be written as:

Grouping together elements of / and those of A gives:

A A K
P’ Pxj
Py~
/: i J
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The graph A(P)

Definition. Let S = M°[G; I, A; P] be a completely 0-simple
semigroup. We let A(P) denote the undirected bipartite graph with set
of vertices /U A and an edge between i and X if and only if py; # 0.

A

S = MO[G; I,A; P] A(P)
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The graph A(P)

Definition. Let S = MO[G; I, A; P] be a completely 0-simple
semigroup. We let A(P) denote the undirected bipartite graph with set
of vertices /U A and an edge between i and X if and only if py; # 0.

A

S = MO[G; I,A; P] A(P)
Lemma. The following conditions are equivalent:
(i) T(S) is a connected graph;
(i) A(P) is a connected graph;
(iii)y (E(S))NH;\#oforanyic landany A € A.
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Paths and values

There is a natural correspondence between non-zero products of
idempotents in S and paths in A(P) starting in / and ending in A.

Definition
In A(P) the value of the path # = zy — 2z, — ... — z; is defined to be

V(r) = (21, 22)(22, 2z3) . .. (211, 21) € G
where
o(i,\) =py', o\ i)=pai, i€l, XEA
Letx,y e TUA.
@ Py, - all paths in A(P) with initial vertex x and terminal vertex y.
@ Vi, ={V(r):7me Pxy} - values of paths from x to y.
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Relative Rank

Definition
Let S be a semigroup and let T be a subset of S.

The relative rank of S modulo T is the minimum number of elements of
S that are need to be added to T in order to generate the whole of S:

rank(S: T) =min{|A|: AC §,(T UA) = S}.

Example
@ rank(S: S) =0, rank(S : @) = rank(S).
Q rank(T,: Sp) =1, rank(P, : T,) = 1.
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Main result (I)
Theorem. (RG & Ruskuc (2005)) Let S = MO[G; I, A; P] be a finite Rees
matrix semigroup with k connected components /1 x A1, ..., Ik X Ag.

@ Forevery j=1,...,kchoose (1;,15,) € [; x A; with Pin 1, #0.
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Main result (I)
Theorem. (RG & Ruskuc (2005)) Let S = MO[G; I, A; P] be a finite Rees
matrix semigroup with k connected components /1 x A1, ..., Ik X Ag.

@ Forevery j=1,...,kchoose (1;,15,) € [; x A; with Pin 1, #0.
@ For A € A, and i € |, define:

(i) m» - a path connecting 1, to \ in the subgraph I, U A,;
(i) = - a path connecting i to 1,, in the subgraph /U A,.
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Main result (I)
Theorem. (RG & Ruskuc (2005)) Let S = MO[G; I, A; P] be a finite Rees
matrix semigroup with k connected components /1 x A1, ..., Ik X Ag.

@ Forevery j=1,...,kchoose (1;,15,) € [; x A; with Pin 1, #0.
@ For A € Ar and i € |, define:

(i) m» - a path connecting 1, to \ in the subgraph I, U A,;
(i) = - a path connecting i to 1,, in the subgraph /; U A,.

@ Foreveryr=1,... klet
axi = V(m)paiV(mi)piy1, (A1) € Ar x ).

H, := subgroup generated by the set {a,; | (A, i) € Ar x I, a5 # 0}.
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Main result (I)
Theorem. (RG & Ruskuc (2005)) Let S = MO[G; I, A; P] be a finite Rees
matrix semigroup with k connected components /1 x A1, ..., Ik X Ag.

@ Forevery j=1,...,kchoose (1;,15,) € [; x A; with Pin 1, #0.
@ For A € A, and i € |, define:

(i) m» - a path connecting 1, to \ in the subgraph I, U A,;
(i) = - a path connecting i to 1,, in the subgraph /; U A,.

@ Foreveryr=1,... klet
axi = V(m)paiV(mi)piy1, (A1) € Ar x ).

H, := subgroup generated by the set {a,; | (A, i) € Ar x I, a5 # 0}.

Then
rank(S) = max(|/], |Al, pmin + k — 1),

where

K
pmin = Min{rank(G : | J giHigi )lon1.- .., 9k € G}

i=1
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Graham normal form (R. L. Graham 1968)

Let S = MO[G; I, A; P]. It is always possible to normalize the structure
matrix P to obtain Q with the following properties:

@ the matrix Q is a direct sum of r blocks Cy, ..., C;:

L L ... |
A4 Cq 0
N2 Co
A, 0 C,

@ Each matrix C; : A; x Il; — GY is regular and

r
(E(8)) = |J MO[Gi; Ii, Ai; C]
i=1
where G; is the subgroup of G generated by the non-zero entries
of G, fori=1,....r.
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Main result (ll)

Theorem (RG & Ruskuc (2005))
@ S = MOG; I, A, P] - a finite Rees matrix semigroup with k
connected components Iy x Nq,..., Ix x Ng.
@ P - regular matrix in Graham normal form.

@ Forr=1,... k let H, be the subgroup of G generated by the
non-zero entries of component C, = I, x A, of P.

Then
rank(S) = max(|l|, I\, pjn + Kk — 1)
where

K
pmin = min{rank(G: | J giHigi ") | 91, .., 9 € G}.

i=1
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Corollaries

A Hamiltonian group is a group all of whose subgroups are normal. In
particular, all abelian groups are Hamiltonian.

Corollary

Let S = MO[G; I, \; P] be a finite Rees matrix semigroup with G a
Hamiltonian group, k connected components and with regular matrix P
in Graham normal form. Let H be the subgroup of G generated by the
non-zero entries of P. Then

rank(S) = max(|1], |A|, rank(G : H) + k — 1).

Proof. Conjugating has no effect on subgroups O
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Brandt semigroups

Definition
@ A semigroup S is regular if every R-class and every £-class of S
contains at least one idempotent.
@ A semigroup S is inverse if every R- and every L-class contains
exactly one idempotent.

@ A Brandt semigroup B = B(G, n) is a Rees matrix semigroup
MO[G; I, I, P] where P ~ I, the n x nidentity matrix, and
I={1,...,n}.

Fact. A finite 0-simple semigroup is inverse iff it is isomorphic to
B(G, n) for some group G and some n € N.
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Brandt semigroups

Corollary

Let S = MO[G; I, \; P] be a finite Rees matrix semigroup with k
connected components and with regular matrix P only containing
entries from {0,1}. Then

rank(S) = max(|1],|A|, rank(G) + k — 1).

Proof

k
Pmin = Min{rank(G : Ug,-H,-g,-‘1)|g1,...,gk € G} =rank(G: {1g}) = rank(G).

i=1
O

Corollary (Gomes and Howie (1987))

Let B = B(G, n) be a Brandt semigroup, where G is a finite group of
rankr > 1. Thentherankof Bisr +n —1.
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Ideals of symmetric inverse semigroup

The ideals of symmetric inverse semigroup I, are the sets
Lin,r)={a € l,:|im(a)| <r}.

Corollary (Garba (1994))

Letne N andlet1 <r < n. Then:

rank(L(n,r)) = (’:) +1.

Proof

rank(L(n, r)) = rank(L(n, r)/L(n,r—1)) = rank(B(S, (7) )) =2+ (7) -

Note. The ranks of the two-sided ideals of all the other semigroups of

transformations mentioned earlier can also be recovered as
applications of the main theorem.

Robert Gray (University of Leeds)
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Subsemigroups of T,

Definition

@ Letn,reNwith2 <r < n.

@ Let Abe a set of r-subsets of {1,...,n}.

@ Let B be a set of partitions of {1,..., n}, each with r classes.
Let:

S(A,B) = ({a e T,:im(a) € A kera € B} ),

and let I'(A, B) = AU B be the bipartite graph where Z € A'is
connected to K € B iff Z is a transversal of K.

Robert Gray (University of Leeds)
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Example
Let n=7 and r = 3 and define the set of images:
A={{1,2,3},{1,6,7},{5,6,7},{2,4,6},{1,2,5}}
and set of partitions:
B=1{(1,4,7|2,5|3,6),(1,2,3|6,5|7),(1,2/6,7,4|3,5)}.
Then the graph I'(A, B) is isomorphic to:

(1,4,712,513,6)  (1,2,3/6,5]7) (1,2l677é\3,5)

(1.23) (1,67} (567) (248) (1.23)

Robert Gray (University of Leeds)
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Family of transformation semigroups

Theorem (RG 2005)
@ Letn,re Nwith2 <r < n.

@ A-asetofr-subsets of {1,...,n}.
@ B - a set partitions of {1, ..., n} each with r classes.
Then
max (v (A), vi(B)) + vy if MD > 2
rank(S(A, B)) = ¢ max(v4+(A),v4(B))+w+1 ifMD =1
|A||B|r! ifMD =0
where

o vi(X)=|{xeX:d(x)>0}; w:=|{vel(AB):d(v)=0}

@ MD =max{d(v): v eTl(AB)}.

Robert Gray (University of Leeds)
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Example
Let n=7 and r = 3 and define the set of images:

A={{1,2,3},{1,6,7},{5,6,7},{2,4,6},{1,2,5}}
and set of partitions:
B={(1,4,7|2,5/3,6),(1,2,3|6,5|7),(1,2/6,7,4|3,5)}.
Then the graph I'(A, B) is isomorphic to:

(1,4712,5136)  (1,2,3/6,5]7) (1,2|677é\3,5)

{1,2,3} {1,6,7} {5,6,7} {2,4,6} {1 72%}

which has two isolated vertices so that vp =2, v, (B) =2, v.(A) =4
and maximum degree MD = 3. Therefore:

rank(S(A, B)) = max(2,4) +2 = 6.
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Final application

Theorem (Mclver & Neumann (1987))
rank(G) < max(2, |[n/2]) for all G < S, (and this is best possible).

Theorem (RG 2005)

Letn> 4 and let1 < r < n. Every regular subsemigroup of T, that is
generated by mappings all with image size equal to r, and has a
unique maximal [J -class, is generated by at most S(n, r) elements.
Moreover, the bound is attained by the semigroup K(n,r).
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Open problems

@ Can the above results for completely 0-simple semigroups be
extended to:
» finitely generated completely 0-simple semigroups?
» Rees matrix semigroups over arbitrary monoids?

» semigroups with more complicated ideal structure (e.g. small
monoids)?

@ Prove the analogue of Mclver and Neumann’s theorem for
subsemigroups of the full transformation semigroup (i.e.
determine max{rank(S) : S < Tp}).
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