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Group theory

A group is...
a set G with a binary operation G× G→ G, (x, y) 7→ xy, written
multiplicatively, such that the following axioms hold:

I associativity: x(yz) = (xy)z for all x, y, z ∈ G;
I identity: there is an identity element 1 ∈ G satisfying 1x = x1 = x for

all x ∈ G;
I inverse: each element x ∈ G has an inverse x−1 satisfying

xx−1 = x−1x = 1.

But what is group theory really all about?
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What is group theory?

I Group theory is the mathematical
study of symmetry.

I The axioms of a group formalize
the essential aspects of
symmetry.

Symmetry (Encyclopaedia Britannica)
“In geometry, the property by which the sides of a figure or object reflect
each other across a line (axis of symmetry) or surface; in biology, the
orderly repetition of parts of an animal or plant; in chemistry, a fundamental
property of orderly arrangements of atoms in molecules or crystals; in
physics, a concept of balance illustrated by such fundamental laws as the
third of Newton’s laws of motion.”
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Symmetry groups

The symmetries of any (mathematical) object form a group (called its
automorphism group).

“Whatever you have to do with a structure-endowed entity Σ try to
determine its group of automorphisms... You can expect to gain a deep
insight into the constitution of Σ in this way.”

Hermann Weyl, Symmetry (1952).



Graphs and symmetry

Definition
A graph Γ consists of a set VΓ of vertices, and set EΓ of edges (unordered
pairs of distinct vertices).

Γ1
Γ2

I Γ1 has “more symmetry” than Γ2.
I Imagine you are trapped inside the graph:

I In Γ1 the world looks the same from every vertex.
I In Γ2 the world looks different from each vertex.
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Automorphisms

I An isomorphism φ : Γ1 → Γ2 of graphs is a bijection that maps edges
to edges, and non-edges to non-edges.

I An automorphism of a graph Γ is an isomorphism φ : Γ→ Γ.
I Aut(Γ) - the full automorphism group of the graph Γ.



Automorphisms

Γ - graph, Aut(Γ) - automorphism group

Example (Γ - a square)

21

4 3

7→
34

1 2

(
1 2 3 4
4 3 2 1

)
∈ Aut(Γ)

21

4 3

7→
31

4 2

(
1 2 3 4
1 3 2 4

)
6∈ Aut(Γ)

Here Aut(Γ) is the dihedral group of all 8 symmetries of the square
(4 reflections & 4 rotations).



Automorphisms and symmetry

Γ1
Γ2

I For every pair of vertices w, v of Γ1 there is an automorphism of Γ1 that
maps w to v.

I Aut(Γ1) = rotations + reflections (dihedral group).
I The only automorphism of Γ2 is the identity mapping:

I i.e. |Aut(Γ2)| = 1.



Frucht’s theorem

Theorem (Frucht (1938))
Every group is isomorphic to the automorphism group of some graph.

Conclusion: The study of automorphism groups of graphs is as difficult as
the study of groups in general.

Idea:
I Identify nice / natural symmetry conditions on graphs.
I Study the resulting families of graphs and their automorphism groups.
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Local or global?

Among other definitions of symmetry, the dictionary will often list the
following two:

I exact correspondence of
parts;

I remaining unchanged by
transformation.

Mathematicians usually consider the second, global, notion, but what about
the first, local, notion, and what about the relationship between them?



Homogeneous graphs

Definition
A graph Γ is homogeneous if every isomorphism between finite induced
subgraphs of Γ can be extended to an automorphism of Γ.

homogeneous ≡ any local symmetry is global

Γ

Induced subgraphs.

Γ Some induced subgraphs
12
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Homogeneous graphs

Definition
A graph Γ is homogeneous if every isomorphism between finite induced
subgraphs of Γ can be extended to an automorphism of Γ.

Induced subgraphs.
However, the graph Γ:

12

3 4

has no induced subgraph isomorphic to:



Extending isomorphisms to automorphisms

1

2

3 4

5

−→

1

2

3 4

5

The isomorphism
(1, 3) 7→ (4, 2)

between finite induced subgraphs

extends to the automorphism(
1 2 3 4 5
4 3 2 1 5

)
Fact. The pentagon is a homogeneous graph.
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e.g. There is a path of length two from 1 to 3, while there is no path of
length two from 1 to 4.

So the hexagon is not a homogeneous graph.
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The finite homogeneous graphs

Theorem (Gardiner (1976))
A finite graph is homogeneous if and only if it is isomorphic to one of the
following (or its complement):

1. finitely many disjoint copies of a complete graph Kr (graph with r
vertices where every pair is joined by an edge)

2. the pentagon C5

3. the graph K3 × K3 drawn below



The random graph

Definition
Constructed by Rado (1964). The vertex set is the natural numbers N0
(including zero).

For i, j ∈ N0, i < j, then i and j are joined if and only if the ith digit in j in
base 2, reading right-to-left, is 1.

0 1
20

2
21

3
21+20

4
22

5
22+20

6
22+21

7
22+21+20

8
23

9
23+20

· · ·



The random graph

Consider the following property of graphs:

(*) For any two finite disjoint sets U and V of vertices, there exists a vertex
w, not in U ∪ V , adjacent to every vertex in U and to no vertex in V .
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The random graph

Consider the following property of graphs:

(*) For any two finite disjoint sets U and V of vertices, there exists a vertex
w, not in U ∪ V , adjacent to every vertex in U and to no vertex in V .

Theorem
There exists a countably infinite graph R satisfying property (*), and it
is unique up to isomorphism. The graph R is homogeneous.

Existence. The random graph R defined above satisfies property (*).

Uniqueness and homogeneity. Both follow from a back-and-forth ar-
gument. Property (*) is used to extend the domain (or range) of any
isomorphism between finite substructures one vertex at a time.



Existence

Claim. The random graph has property (*).

Proof (by example).
Challenge - Find a vertex adjacent to all of

U = {2, 19, 257}

but not adjacent to any of

V = {0, 3, 36, 1006}.

Solution - For instance, you can take the vertex:

n = 22 + 219 + 2257 + 21000000 ∈ N.
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Uniqueness and homogeneity
Back-and-forth argument

Claim. (i) Any two countable graphs with property (*) are isomorphic.

Γ1 Γ2
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Uniqueness and homogeneity
Back-and-forth argument

Claim. (i) Any two countable graphs with property (*) are isomorphic.
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φ3

φ =
⋃
φi



Uniqueness and homogeneity
Back-and-forth argument

Claim. (i) Any two countable graphs with property (*) are isomorphic.
(ii) Any countable graph with property (*) is homogeneous.

Γ1 Γ2

φ0

φ1

φ2

φ3

φ =
⋃
φi



The random graph

Consider the following property of graphs:

(*) For any two finite disjoint sets U and V of vertices, there exists a vertex
w, not in U ∪ V , adjacent to every vertex in U and to no vertex in V .

Theorem
There exists a countably infinite graph R satisfying property (*), and it is
unique up to isomorphism. The graph R is homogeneous.

Existence. The random graph R defined above satisfies property (*).

Uniqueness and homogeneity. Both follow from a back-and-forth
argument. Property (*) is used to extend the domain (or range) of any
isomorphism between finite substructures one vertex at a time.



Properties of the random graph

The random graph R has the following properties:
I Random: if we choose a countable graph at random (edges

independently with probability 1
2 ), then with probability 1 it is

isomorphic to R (Erdös and Rényi, 1963).

I Indestructible: it remains unchanged under any of the following
operations:

I deleting any finite set of vertices;
I adding or deleting any finite set of edges.

I Universal: it embeds every countable graph as an induced subgraph.
I Partition property: for any partition VΓ = X ∪ Y either the subgraph

induced by X, or the subgraph induced by Y , is again isomorphic to R.
I Aside from the complete graph, and empty graph, R is the only countable

graph with this property.
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Automorphisms of the random graph

The automorphism group of R is a very interesting group. It has the
following properties:

I |Aut(R)| = 2ℵ0 - it is an uncountably infinite group.
I Aut(R) is simple (Truss, 1985)

I i.e. it contains no proper normal subgroups.

I Aut(R) contains a copy of every finite or countable group as a subgroup
i.e. it is a universal group.



Homogeneous structures and Fraïssé’s theorem

Homogeneity is important in an area of logic called model theory. It goes
back to the fundamental work of Fraïssé (1953).

I The age of a graph Γ is the set of all finite induced subgraphs of Γ.

Fraïssé:
I showed that a countable homogeneous graph is uniquely determined by

its age;
I described how a homogeneous graph is “built up” from its finite

induced subgraphs.

Example
R - the random graph, Age(R) = {all finite graphs}

R is the unique countable homogeneous graph with this age.



Homogeneous structures and Fraïssé’s theorem

Homogeneity is important in an area of logic called model theory. It goes
back to the fundamental work of Fraïssé (1953).

I The age of a graph Γ is the set of all finite induced subgraphs of Γ.

Fraïssé:
I showed that a countable homogeneous graph is uniquely determined by

its age;
I described how a homogeneous graph is “built up” from its finite

induced subgraphs.

Example
R - the random graph, Age(R) = {all finite graphs}

R is the unique countable homogeneous graph with this age.



Homogeneous structures and Fraïssé’s theorem

Homogeneity is important in an area of logic called model theory. It goes
back to the fundamental work of Fraïssé (1953).

I The age of a graph Γ is the set of all finite induced subgraphs of Γ.

Fraïssé:
I showed that a countable homogeneous graph is uniquely determined by

its age;
I described how a homogeneous graph is “built up” from its finite

induced subgraphs.

Example
R - the random graph, Age(R) = {all finite graphs}

R is the unique countable homogeneous graph with this age.



Countable homogeneous graphs

Examples (Henson (1971))
Henson showed:

I There is a unique countable homogeneous graph H3 satisfying:

Age(H3) = {all finite graphs not embedding a triangle}.

I More generally, for every n ≥ 3, there is a unique countable
homogeneous graph Hn satisfying:

Age(Hn) = {all finite graphs not embedding the complete graph Kn}.

Theorem (Lachlan and Woodrow (1980))
Let Γ be a countably infinite homogeneous graph. Then Γ (or its
complement) is isomorphic to one of: a disjoint union of complete graphs,
the random graph, or a Henson graph Hn for some n ≥ 3.
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Other structures

Fraïssé’s theory applies to mathematical structures generally, not just to
graphs, giving rise to a whole host of other interesting infinite homogeneous
structures, including:

I the random tournament, directed graph, hypergraph, etc.
I the universal homogeneous total order Q (Cantor, 1895), partial order,

etc.
I the universal locally finite group (Hall, 1959).

The study of homogeneous structures, and their automorphism groups, is
still a very active area of research, with many questions still unanswered.



Some open problems

Henson graphs
I Is it true that Aut(Hm) ∼= Aut(Hn) if and only if n = m?

Metric spaces
A connected graph is easily seen to be a metric space (i.e. a space
X = (X, d) where d is a distance function) with the distance between
vertices being the length of a shortest path connecting them.

I Classify the countable homogeneous metric spaces.
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