Homogeneous structures

Robert Gray

Centro de Álgebra da Universidade de Lisboa

Lisboa, April 2010

Group theory

A group is...

a set *G* with a binary operation $G \times G \rightarrow G$, $(x, y) \mapsto xy$, written multiplicatively, such that the following axioms hold:

- \blacktriangleright associativity: $x(yz) = (xy)z$ for all $x, y, z \in G$;
- identity: there is an identity element $1 \in G$ satisfying $1x = x1 = x$ for all $x \in G$:
- **►** inverse: each element $x \in G$ has an inverse x^{-1} satisfying $xx^{-1} = x^{-1}x = 1.$

Group theory

A group is...

a set *G* with a binary operation $G \times G \rightarrow G$, $(x, y) \mapsto xy$, written multiplicatively, such that the following axioms hold:

- \blacktriangleright associativity: $x(yz) = (xy)z$ for all $x, y, z \in G$;
- identity: there is an identity element $1 \in G$ satisfying $1x = x1 = x$ for all $x \in G$:
- **►** inverse: each element $x \in G$ has an inverse x^{-1} satisfying $xx^{-1} = x^{-1}x = 1.$

But what is group theory really all about?

What is group theory?

- \triangleright Group theory is the mathematical study of symmetry.
- \blacktriangleright The axioms of a group formalize the essential aspects of symmetry.

What is group theory?

- \triangleright Group theory is the mathematical study of symmetry.
- \blacktriangleright The axioms of a group formalize the essential aspects of symmetry.

Symmetry (Encyclopaedia Britannica)

"In geometry, the property by which the sides of a figure or object reflect each other across a line (axis of symmetry) or surface; in biology, the orderly repetition of parts of an animal or plant; in chemistry, a fundamental property of orderly arrangements of atoms in molecules or crystals; in physics, a concept of balance illustrated by such fundamental laws as the third of Newton's laws of motion."

The symmetries of any (mathematical) object form a group (called its automorphism group).

"Whatever you have to do with a structure-endowed entity Σ try to determine its group of automorphisms... You can expect to gain a deep insight into the constitution of Σ in this way."

Hermann Weyl, *Symmetry (1952)*.

Graphs and symmetry

Definition

A graph Γ consists of a set *V*Γ of vertices, and set *E*Γ of edges (unordered pairs of distinct vertices).

Graphs and symmetry

Definition

A graph Γ consists of a set *V*Γ of vertices, and set *E*Γ of edges (unordered pairs of distinct vertices).

 \blacktriangleright Γ₁ has "more symmetry" than Γ₂.

Graphs and symmetry

Definition

A graph Γ consists of a set *V*Γ of vertices, and set *E*Γ of edges (unordered pairs of distinct vertices).

- $\blacktriangleright \Gamma_1$ has "more symmetry" than Γ_2 .
- \blacktriangleright Imagine you are trapped inside the graph:
	- In Γ_1 the world looks the same from every vertex.
	- In Γ_2 the world looks different from each vertex.

Automorphisms

- An isomorphism $\phi : \Gamma_1 \to \Gamma_2$ of graphs is a bijection that maps edges to edges, and non-edges to non-edges.
- An automorphism of a graph Γ is an isomorphism $\phi : \Gamma \to \Gamma$.
- \blacktriangleright Aut(Γ) the full automorphism group of the graph Γ.

Automorphisms

Γ - graph, Aut(Γ) - automorphism group Example (Γ - a square)

Here $Aut(\Gamma)$ is the dihedral group of all 8 symmetries of the square (4 reflections & 4 rotations).

Automorphisms and symmetry

- **For every pair of vertices** *w*, *v* of Γ_1 there is an automorphism of Γ_1 that maps *w* to *v*.
	- Aut(Γ_1) = rotations + reflections (dihedral group).
- \blacktriangleright The only automorphism of Γ_2 is the identity mapping:
	- i.e. $|\text{Aut}(\Gamma_2)| = 1$.

Frucht's theorem

Theorem (Frucht (1938))

Every group is isomorphic to the automorphism group of some graph.

Frucht's theorem

Theorem (Frucht (1938))

Every group is isomorphic to the automorphism group of some graph.

Conclusion: The study of automorphism groups of graphs is as difficult as the study of groups in general.

Idea:

- \blacktriangleright Identify nice / natural symmetry conditions on graphs.
- \triangleright Study the resulting families of graphs and their automorphism groups.

Local or global?

Among other definitions of symmetry, the dictionary will often list the following two:

- \triangleright exact correspondence of parts;
- \blacktriangleright remaining unchanged by transformation.

Mathematicians usually consider the second, global, notion, but what about the first, local, notion, and what about the relationship between them?

Homogeneous graphs

Definition

A graph Γ is homogeneous if every isomorphism between finite induced subgraphs of Γ can be extended to an automorphism of Γ .

homogeneous \equiv any local symmetry is global Γ

Homogeneous graphs

Definition

A graph Γ is homogeneous if every isomorphism between finite induced subgraphs of Γ can be extended to an automorphism of Γ .

Induced subgraphs.

Homogeneous graphs

Definition

A graph Γ is homogeneous if every isomorphism between finite induced subgraphs of Γ can be extended to an automorphism of Γ .

Induced subgraphs.

However, the graph Γ:

has no induced subgraph isomorphic to:

$$
\begin{matrix} 0 \\ 0 \\ 0 \end{matrix}
$$

The isomorphism

 $(1, 3) \mapsto (4, 2)$

between finite induced subgraphs

The isomorphism

 $(1, 3) \mapsto (4, 2)$

between finite induced subgraphs extends to the automorphism

$$
\begin{pmatrix}\n1 & 2 & 3 & 4 & 5 \\
4 & 3 & 2 & 1 & 5\n\end{pmatrix}
$$

The isomorphism

 $(1, 3) \mapsto (4, 2)$

between finite induced subgraphs extends to the automorphism

$$
\begin{pmatrix}\n1 & 2 & 3 & 4 & 5 \\
4 & 3 & 2 & 1 & 5\n\end{pmatrix}
$$

Fact. The pentagon is a homogeneous graph.

The isomorphism between finite induced subgraphs

 $(1, 3) \mapsto (1, 4)$

does not extend to the automorphism.

e.g. There is a path of length two from 1 to 3, while there is no path of length two from 1 to 4.

The isomorphism between finite induced subgraphs

 $(1, 3) \mapsto (1, 4)$

does not extend to the automorphism.

e.g. There is a path of length two from 1 to 3, while there is no path of length two from 1 to 4.

So the hexagon is not a homogeneous graph.

The finite homogeneous graphs

Theorem (Gardiner (1976))

A finite graph is homogeneous if and only if it is isomorphic to one of the following (or its complement):

- 1. *finitely many disjoint copies of a complete graph K^r (graph with r vertices where every pair is joined by an edge)*
- 2. *the pentagon* C_5
- 3. *the graph* $K_3 \times K_3$ *drawn below*

Definition

Constructed by Rado (1964). The vertex set is the natural numbers \mathbb{N}_0 (including zero).

For $i, j \in \mathbb{N}_0$, $i < j$, then *i* and *j* are joined if and only if the *i*th digit in *j* in base 2, reading right-to-left, is 1.

Consider the following property of graphs:

(*) For any two finite disjoint sets *U* and *V* of vertices, there exists a vertex *w*, not in $U \cup V$, adjacent to every vertex in *U* and to no vertex in *V*.

Consider the following property of graphs:

(*) For any two finite disjoint sets *U* and *V* of vertices, there exists a vertex *w*, not in $U \cup V$, adjacent to every vertex in *U* and to no vertex in *V*.

Theorem

There exists a countably infinite graph R satisfying property (), and it is unique up to isomorphism. The graph R is homogeneous.*

Existence. The random graph *R* defined above satisfies property (*).

Uniqueness and homogeneity. Both follow from a back-and-forth argument. Property (*) is used to extend the domain (or range) of any isomorphism between finite substructures one vertex at a time.

Existence

Claim. The random graph has property (*).

Proof (by example).

Challenge - Find a vertex adjacent to all of

 $U = \{2, 19, 257\}$

but not adjacent to any of

 $V = \{0, 3, 36, 1006\}.$

Existence

Claim. The random graph has property (*).

Proof (by example).

Challenge - Find a vertex adjacent to all of

 $U = \{2, 19, 257\}$

but not adjacent to any of

$$
V = \{0, 3, 36, 1006\}.
$$

Solution - For instance, you can take the vertex:

$$
n = 2^2 + 2^{19} + 2^{257} + 2^{1000000} \in \mathbb{N}.
$$

Back-and-forth argument

Back-and-forth argument

Claim. (i) Any two countable graphs with property (*) are isomorphic. (ii) Any countable graph with property (*) is homogeneous.

Consider the following property of graphs:

(*) For any two finite disjoint sets *U* and *V* of vertices, there exists a vertex *w*, not in $U \cup V$, adjacent to every vertex in *U* and to no vertex in *V*.

Theorem

There exists a countably infinite graph R satisfying property (), and it is unique up to isomorphism. The graph R is homogeneous.*

Existence. The random graph *R* defined above satisfies property (*).

Uniqueness and homogeneity. Both follow from a back-and-forth argument. Property $(*)$ is used to extend the domain (or range) of any isomorphism between finite substructures one vertex at a time.

The random graph *R* has the following properties:

 \triangleright Random: if we choose a countable graph at random (edges independently with probability $\frac{1}{2}$), then with probability 1 it is isomorphic to *R* (Erdös and Rényi, 1963).

The random graph *R* has the following properties:

- \triangleright Random: if we choose a countable graph at random (edges independently with probability $\frac{1}{2}$), then with probability 1 it is isomorphic to *R* (Erdös and Rényi, 1963).
- \triangleright Indestructible: it remains unchanged under any of the following operations:
	- \blacktriangleright deleting any finite set of vertices;
	- \blacktriangleright adding or deleting any finite set of edges.

The random graph *R* has the following properties:

- \triangleright Random: if we choose a countable graph at random (edges independently with probability $\frac{1}{2}$), then with probability 1 it is isomorphic to *R* (Erdös and Rényi, 1963).
- \triangleright Indestructible: it remains unchanged under any of the following operations:
	- \blacktriangleright deleting any finite set of vertices;
	- \blacktriangleright adding or deleting any finite set of edges.

 \triangleright Universal: it embeds every countable graph as an induced subgraph.

The random graph *R* has the following properties:

- \triangleright Random: if we choose a countable graph at random (edges independently with probability $\frac{1}{2}$), then with probability 1 it is isomorphic to *R* (Erdös and Rényi, 1963).
- \triangleright Indestructible: it remains unchanged under any of the following operations:
	- \blacktriangleright deleting any finite set of vertices;
	- \blacktriangleright adding or deleting any finite set of edges.
- \triangleright Universal: it embeds every countable graph as an induced subgraph.
- **Partition property:** for any partition $V\Gamma = X \cup Y$ either the subgraph induced by *X*, or the subgraph induced by *Y*, is again isomorphic to *R*.
	- \triangleright Aside from the complete graph, and empty graph, *R* is the only countable graph with this property.

Automorphisms of the random graph

The automorphism group of *R* is a very interesting group. It has the following properties:

- \blacktriangleright $|\text{Aut}(R)| = 2^{\aleph_0}$ it is an uncountably infinite group.
- Aut (R) is simple (Truss, 1985)
	- \blacktriangleright i.e. it contains no proper normal subgroups.
- Aut (R) contains a copy of every finite or countable group as a subgroup i.e. it is a universal group.

Homogeneous structures and Fraïssé's theorem

Homogeneity is important in an area of logic called model theory. It goes back to the fundamental work of Fraïssé (1953).

Homogeneous structures and Fraïssé's theorem

Homogeneity is important in an area of <u>logic</u> called model theory. It goes back to the fundamental work of Fraïssé (1953).

 \blacktriangleright The age of a graph Γ is the set of all finite induced subgraphs of Γ .

Homogeneous structures and Fraïssé's theorem

Homogeneity is important in an area of logic called model theory. It goes back to the fundamental work of Fraïssé (1953).

- \blacktriangleright The age of a graph Γ is the set of all finite induced subgraphs of Γ . Fraïssé:
	- \triangleright showed that a countable homogeneous graph is uniquely determined by its age;
	- \triangleright described how a homogeneous graph is "built up" from its finite induced subgraphs.

Example

R - the random graph, $Age(R) = \{all finite graphs\}$

R is the unique countable homogeneous graph with this age.

Countable homogeneous graphs

Examples (Henson (1971))

Henson showed:

 \blacktriangleright There is a unique countable homogeneous graph H_3 satisfying:

 $Age(H_3) = \{all finite graphs not embedding a triangle\}.$

Countable homogeneous graphs

Examples (Henson (1971))

Henson showed:

 \triangleright There is a unique countable homogeneous graph H_3 satisfying:

 $Age(H_3) = \{all finite graphs not embedding a triangle\}.$

 \triangleright More generally, for every $n > 3$, there is a unique countable homogeneous graph H_n satisfying:

Age(H_n) = {all finite graphs not embedding the complete graph K_n }.

Countable homogeneous graphs

Examples (Henson (1971))

Henson showed:

 \triangleright There is a unique countable homogeneous graph H_3 satisfying:

 $Age(H_3) = \{ \text{all finite graphs not embedding a triangle} \}.$

 \triangleright More generally, for every $n > 3$, there is a unique countable homogeneous graph H_n satisfying:

 $Age(H_n) = \{all finite graphs not embedding the complete graph $K_n\}$.$

Theorem (Lachlan and Woodrow (1980))

Let Γ *be a countably infinite homogeneous graph. Then* Γ *(or its complement) is isomorphic to one of: a disjoint union of complete graphs, the random graph, or a Henson graph H_n for some* $n > 3$ *.*

Other structures

Fraïssé's theory applies to mathematical structures generally, not just to graphs, giving rise to a whole host of other interesting infinite homogeneous structures, including:

- \blacktriangleright the random tournament, directed graph, hypergraph, etc.
- \triangleright the universal homogeneous total order \mathbb{O} (Cantor, 1895), partial order, etc.
- \blacktriangleright the universal locally finite group (Hall, 1959).

The study of homogeneous structures, and their automorphism groups, is still a very active area of research, with many questions still unanswered.

Some open problems

Henson graphs

► Is it true that $Aut(H_m) \cong Aut(H_n)$ if and only if $n = m$?

Some open problems

Henson graphs

► Is it true that $Aut(H_m) \cong Aut(H_n)$ if and only if $n = m$?

Metric spaces

A connected graph is easily seen to be a metric space (i.e. a space $X = (X, d)$ where *d* is a distance function) with the distance between vertices being the length of a shortest path connecting them.

 \triangleright Classify the countable homogeneous metric spaces.