Homotopical and homological finiteness properties of monoids and their subgroups

Robert Gray

International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory Lincoln, May 2009

Presentations

Fact: There are lots of *nasty* finitely presented monoids out there.

Markov (1947), Post (1947): There exist finitely presented monoids for which there is no algorithm to solve the word problem.

Idea

- 1. Identify a class C of "nice" finite presentations:
 - finite complete rewriting systems
 - = noetherian and confluent

A monoid defined my a finite complete rewriting system has solvable word problem.

- 2. Try to gain understanding of those monoids that may be defined by presentations from C:
 - study properties of monoids defined by such rewriting systems:
 - Finite derivation type (FDT)
 - ► FP_n

Finite derivation type

a homotopical finiteness condition

- ► Is a property of finitely presented monoids.
- Introduced by Squier (1994)
 - (and independently by Pride (1995))

Original motivation

To capture much of the information of a finite complete rewriting system for a monoid in a property which is independent of the choice of presentation.

- Connections with diagram groups (which are fundamental groups of Squier complexes of monoid presentations)
 - Kilibarda (1997)
 - Guba & Sapir (1997)

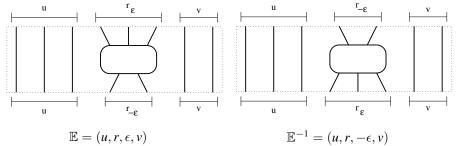
The derivation graph of a presentation

- $\mathcal{P} = \langle A | R \rangle$ a monoid presentation
 - A alphabet, $R \subseteq A^* \times A^*$ rewrite rules
- Derivation graph: $\Gamma = \Gamma(\mathcal{P}) = (V, E, \iota, \tau, -1)$:
 - Vertices: $V = A^*$
 - Edges are 4-tuples: $\{(u, r, \epsilon, v) : u, v \in A^*, r = (r_{+1}, r_{-1}) \in R, \text{ and } \epsilon \in \{+1, -1\}\}.$
- ▶ Initial and terminal vertices: $\iota, \tau : E \to V$ for $\mathbb{E} = (u, r, \epsilon, v)$:

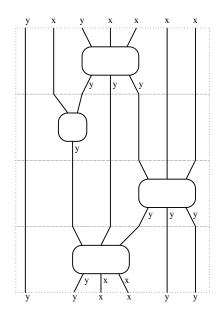
$$\bullet \ \iota \mathbb{E} = ur_{\epsilon}v, \qquad \tau \mathbb{E} = ur_{-\epsilon}v$$

• Inverse edge mapping: $^{-1}: E \to E$

•
$$(u, r, \epsilon, v)^{-1} = (u, r, -\epsilon, v).$$



Paths and pictures



Example.
$$\langle x, y | \underbrace{xy = y}_{r}, \underbrace{yx^2 = y}_{s}^3 \rangle$$

A path is a sequence $\mathbb{P} = \mathbb{E}_1 \circ \mathbb{E}_2 \circ \ldots \circ \mathbb{E}_n$ where $\tau \mathbb{E}_i \equiv \iota \mathbb{E}_{i+1}$.

Gluing edge-pictures together we obtain pictures for paths.

 ι and τ can be defined for paths

In this example $\iota \mathbb{P} = yxyxxxx, \ \tau \mathbb{P} = yyxxyy.$

Operations on pictures

$$\mathcal{P} = \langle A | R \rangle, \quad \Gamma = \Gamma(\mathcal{P})$$

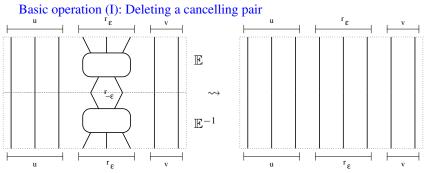
Pictures +---> Paths

- Parallel paths: write $\mathbb{P} \parallel \mathbb{Q}$ if $\iota \mathbb{P} \equiv \iota \mathbb{Q}$ and $\tau \mathbb{P} \equiv \tau \mathbb{Q}$.
- X set of pairs of paths $(\mathbb{P}_1, \mathbb{P}_2)$ such that $\mathbb{P}_1 \parallel \mathbb{P}_1$.

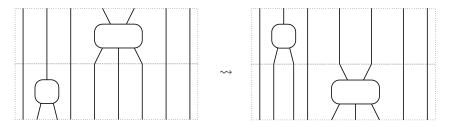
Idea

Want to regard certain paths as being equivalent to one another modulo X.

Operations on pictures

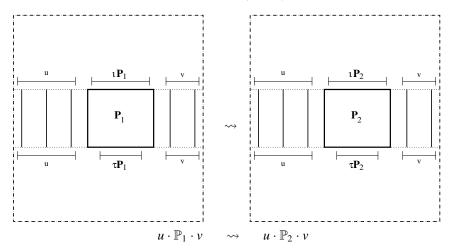


Basic operation (II): Interchanging disjoint discs



Operations on pictures

Basic operation (III): Replacing a subpicture using **X** Replace a subpicture \mathbb{P}_1 by \mathbb{P}_2 provided $(\mathbb{P}_1, \mathbb{P}_2) \in \mathbf{X}$.



Homotopy bases

Note: Applications of these picture operations do not change the initial vertex or the terminal vertex of the original path.

A homotopy base is...

a set **X** of parallel paths such that given an arbitrary pair $(\mathbb{P}_1, \mathbb{P}_2) \in ||$ we can transform \mathbb{P}_1 into \mathbb{P}_2 by a finite sequence of elementary picture operations (and their inverses)

(I) cancelling pairs, (II) disjoint discs, (III) applying X.

Finite derivation type

Definition

 $\mathcal{P} = \langle A | R \rangle$ has finite derivation type (FDT) if there is a **finite homotopy base** for $\Gamma = \Gamma(\mathcal{P})$. A monoid *M* has FDT if it may be defined by a presentation with FDT.

Theorem (Squier (1994))

- ▶ The property FDT is independent of choice of finite presentation.
- Let *M* be a finitely presented monoid. If *M* has a presentation by a finite complete rewriting system then *M* has FDT.

Monoids and their subgroups

Idea

Relate the problem of understanding a property for monoids with the problem of understanding the property for groups.

- \blacktriangleright *M* monoid
- Green's relations \mathcal{R} , \mathcal{L} , and \mathcal{H}

$$x\mathcal{R}y \Leftrightarrow xM = yM, \ x\mathcal{L}y \Leftrightarrow Mx = My, \ \mathcal{H} = \mathcal{R} \cap \mathcal{L}.$$

- $H = an \mathcal{H}$ -class. If H contains an idempotent e then H is a group with identity e.
 - These are precisely the maximal subgroups of *M*.

General question: How do the properties of M relate to those of the maximal subgroups of M?

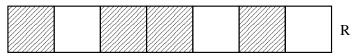
Finite derivation type for subgroups of monoids

(joint work with A. Malheiro)

Theorem

Let M be a monoid and let H be a maximal subgroup of M. If the \mathcal{R} -class of H contains only finitely many \mathcal{H} -classes then:

- *M* has $FDT \Rightarrow H$ has FDT.
- ► Given a homotopy base X for M we show how to construct a homotopy base Y for H. Finiteness is preserved when the *R*-class has only finitely many *H*-classes.
- Ruskuc (1999): Proved the corresponding result for finite presentability.



Regular monoids

► A semigroup is regular if every *R*-class (equivalently every *L*-class) contains an idempotent.

Theorem

Let *M* be a regular monoid with finitely many left and right ideals. Then *M* has finite derivation type if and only if every maximal subgroup of *M* has finite derivation type.

Notes on proof. We show in general how to construct a homotopy base for *M* from homotopy bases of the maximal subgroups.

Complete rewriting systems

Theorem

Let *M* be a regular monoid with finitely many left and right ideals. If every maximal subgroup of *M* has a presentation by a finite complete rewriting system then so does *M*.

- ► The converse is still open.
- ► This relates to the following open problem from group theory:

Question. Is the property of having a finite complete rewriting system preserved when taking finite index subgroups?

The finiteness condition FP_n

- ▶ Wall (1965): introduced a (geometric) finiteness condition for groups called \mathcal{F}_n :
 - $\mathcal{F}_1 \equiv \text{finite generation}$
 - $\mathcal{F}_2 \equiv \text{finite presentability}$
- ► Issue: \mathcal{F}_n not very tractable in terms of using algebraic machinery
- ▶ **Bieri** (1976): introduced FP_n for groups.

Definition

A monoid M is of type left-FP_n if there is a resolution:

$$F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to \mathbb{Z} \to 0$$

of the trivial left $\mathbb{Z}M$ -module \mathbb{Z} such that F_0, F_1, \ldots, F_n are finitely generated free left $\mathbb{Z}M$ -modules. A monoid is of type left-FP_{∞} if it is left-FP_n for all $n \in \mathbb{N}$.

FP_n and FDT

Kobayashi (1990):

M presented by a finite \Rightarrow M is of type complete rewriting system left-FP_{∞}

Cremanns & Otto (1994) / Lafont (1995) / Pride (1995): For finitely presented monoids

 $FDT \ \Rightarrow \ FP_3.$

• Cremanns & Otto (1996): for finitely presented groups

 $FDT\ \equiv\ FP_3.$

Corollary (of our FDT results)

Let *M* be a finitely presented regular monoid with finitely many left and right ideals. If every maximal subgroup of *M* is of type FP₃ then *M* is of type left-FP₃.

FP_n and maximal subgroups (joint work with S. J. Pride)

Definition

A semigroup is simple if it has no proper ideals.

Theorem

Let *S* be a simple semigroup with finitely many left and right ideals. Then the monoid S^1 is of type left-FP_n if and only if all of its maximal subgroups are of type FP_n.

(Of course, all the maximal subgroups are isomorphic here.)

FP_n for monoids with zero

Proposition (Kobayashi (preprint))

If a monoid M has a zero element then M is if type left-FP $_\infty$

Example

G - any group, $M = G^0$ - adjoin a zero (0g = g0 = 00 = 0).

- Maximal subgroups of *M* are: $H_1 = G$, and $H_0 = \{0\}$.
- Kobayashi \Rightarrow *M* is left-FP_{∞}.
- ► *G* can have any properties we like
 - e.g. can choose G not to be of type FP_n for any given n.

FP_n and maximal subgroups minimal ideals

Theorem

Let M be a monoid that has a minimal ideal G which is a group. Then M is of type left-FP_n if and only if G is of type FP_n.

Definition

Clifford monoid - a regular monoid whose idempotents are central

Theorem

A Clifford monoid is of type left-FP_n if and only if it has a minimal ideal G (which is necessarily a group) and G is of type FP_n.

Combining the two results

► For FP₁ we have:

Theorem

Let *S* be a monoid with a minimal ideal *J* such that *J* has finitely many left and right ideals. Let *G* be a maximal subgroup of *J*. Then *S* is of type left-FP₁ if and only if *G* is of type FP₁.

Corollary

Let *S* be a monoid with finitely many left and right ideals. Let *G* be a maximal subgroup of the unique minimal ideal of *S*. Then *S* is of type left-FP₁ if and only if *G* is of type FP₁.

- Currently in the process of extending this to left-FP_n ($n \ge 2$).
- ► For the future: What about monoids without minimal ideals?