The word problem, divisibility problem, and conjugacy problem for one-relator monoids

Robert D. Gray ICMS, Edinburgh, September 2018

Equations over free monoids

- $A = \{a, b, \ldots\}$ alphabet, $\Omega = \{X, Y, \ldots\}$ set of variables,
- Word equation: a pair $(L, R) \in (A \cup \Omega)^* \times (A \cup \Omega)^*$ written L = R.
- System of word equations: $\{L_1 = R_1, \ldots, L_k = R_k\}$.
- ▶ Solution: a homomorphism $\sigma : (A \cup \Omega)^* \to A^*$ leaving *A* invariant such that $\sigma(L_i) = \sigma(R_i)$ for $1 \le i \le k$.

Example

 $A = \{a, b\}, \Omega = \{X, Y, Z, U\}$

$$XaUZaU = YZbXaabY$$

One solution is given by σ defined by

$$X \mapsto abb, Y \mapsto ab, Z \mapsto ba, U \mapsto bab.$$

Theorem (Makanin (1977)). There is an algorithm which decides whether a system of equations over the free monoid has a solution.

Equations over finitely presented monoids

$$\langle A \mid R \rangle = \langle \underbrace{a_1, \ldots, a_n}_{\text{generators}} \mid \underbrace{u_1 = v_1, \ldots, u_m = v_m}_{\text{defining relations}} \rangle$$

- Defines $M = A^* / \rho$ where ρ is the smallest congruence on A^* containing *R*.
- For $w \in A^*$ we use [w] to denote the element $w/\rho \in M$.
- Solution to a system of equations $\{L_1 = R_1, \ldots, L_k = R_k\}$: a homomorphism $\sigma : (A \cup \Omega)^* \to A^*$ leaving A invariant such that $[\sigma(L_i)] = [\sigma(R_i)]$ for $1 \le i \le k$.

Fact: If there is an algorithm for solving equations in $\langle A | R \rangle$ then *M* must have decidable word problem.

Solving equations in one-relator monoids

Longstanding open problem

Is the word problem decidable for one-relator monoids $\langle A \mid u = v \rangle$?

Solving equations in one-relator monoids

Longstanding open problem

Is the word problem decidable for one-relator monoids $\langle A \mid u = v \rangle$?

Question

In which examples / classes of one-relator monoids is solvability of equations decidable?

Natural classes one might consider:

- $\langle A | u = v \rangle$ where |u| = |v| homogeneous presentations.
- ► $\langle A | u = v \rangle$ where u and v have distinct initial letters and distinct terminal letters \Rightarrow monoid is group embeddable.
- $\langle A | w = 1 \rangle$ the so-called 'special' one-relator monoids.

Solving equations in one-relator monoids

Longstanding open problem

Is the word problem decidable for one-relator monoids $\langle A \mid u = v \rangle$?

Question

In which examples / classes of one-relator monoids is solvability of equations decidable?

Natural classes one might consider:

- $\langle A | u = v \rangle$ where |u| = |v| homogeneous presentations.
- ► $\langle A | u = v \rangle$ where u and v have distinct initial letters and distinct terminal letters \Rightarrow monoid is group embeddable.
- $\langle A | w = 1 \rangle$ the so-called 'special' one-relator monoids.

Question: Is there an algorithm for solving equations in the bicyclic monoid $\langle b, c | bc = 1 \rangle$?

Word problem and divisibility problem in $\langle A \mid w = 1 \rangle$

Word problem

Setting $\Omega = \emptyset$, for $u, v \in A^*$ we are asking whether u = v has a solution.

Theorem (Adjan 1966)

The word problem is decidable for special one relator monoids $\langle A | w = 1 \rangle$.

Word problem and divisibility problem in $\langle A \mid w = 1 \rangle$

Word problem

Setting $\Omega = \emptyset$, for $u, v \in A^*$ we are asking whether u = v has a solution.

Theorem (Adjan 1966)

The word problem is decidable for special one relator monoids $\langle A | w = 1 \rangle$.

Divisibility problem

For two words $u, v \in A^*$ we say u is left divisible by v if there is a word $z \in A^*$ such that [u] = [vz].

Setting $\Omega = \{X\}$ we are asking whether the equation

$$u = vX$$

has a solution.

Theorem (Makanin 1966)

The left divisibility problem is decidable for special one relator monoids $\langle A \mid w = 1 \rangle$.

Conjugacy in $\langle A \mid w = 1 \rangle$

Left conjugacy

Set $\Omega = \{X\}$. The words $u, v \in A^*$ are left conjugate if the equation

uX = Xv

has a solution.

Conjugacy in $\langle A \mid w = 1 \rangle$

Left conjugacy

Set $\Omega = \{X\}$. The words $u, v \in A^*$ are left conjugate if the equation

uX = Xv

has a solution.

Cyclic conjugacy

Set $\Omega = \{X, Y\}$. The words $u, v \in A^*$ are cyclically conjugate if the system of equations

$$\{u = XY, v = YX\}$$

has a solution.

Conjugacy in $\langle A \mid w = 1 \rangle$

Left conjugacy

Set $\Omega = \{X\}$. The words $u, v \in A^*$ are left conjugate if the equation

$$uX = Xv$$

has a solution.

Cyclic conjugacy

Set $\Omega = \{X, Y\}$. The words $u, v \in A^*$ are cyclically conjugate if the system of equations

$$\{u = XY, v = YX\}$$

has a solution.

Theorem (Otto 1984 & Zhang 1991)

In $\langle A | w = 1 \rangle$ two words are left conjugate if and only if they are cyclically conjugate. These define equivalence relations on the monoid.

The conjugacy problem in $\langle A | w = 1 \rangle$

Theorem (Zhang 1989)

Let *M* be the monoid defined by $\langle A | w = 1 \rangle$ and let *G* be the group of units of *M*. If *G* has decidable conjugacy problem then *M* has decidable conjugacy problem.

The conjugacy problem in $\langle A | w = 1 \rangle$

Theorem (Zhang 1989)

Let *M* be the monoid defined by $\langle A | w = 1 \rangle$ and let *G* be the group of units of *M*. If *G* has decidable conjugacy problem then *M* has decidable conjugacy problem.

Corollary (Zhang 1989)

The one relator monoids $\langle A | u^n = 1 \rangle$, with n > 1, have decidable conjugacy problem.

Proof. Let *M* the monoid defined by this presentation. By Adjan (1966) *G* is a one-relator group with torsion. It follows my Newman (1968) that *G* has decidable conjugacy problem, and hence so does *M*. \Box

The conjugacy problem in $\langle A | w = 1 \rangle$

Theorem (Zhang 1989)

Let *M* be the monoid defined by $\langle A | w = 1 \rangle$ and let *G* be the group of units of *M*. If *G* has decidable conjugacy problem then *M* has decidable conjugacy problem.

Corollary (Zhang 1989)

The one relator monoids $\langle A | u^n = 1 \rangle$, with n > 1, have decidable conjugacy problem.

Proof. Let *M* the monoid defined by this presentation. By Adjan (1966) *G* is a one-relator group with torsion. It follows my Newman (1968) that *G* has decidable conjugacy problem, and hence so does *M*. \Box

Problem: Is solvability of equations decidable in the one relator monoids $\langle A \mid u^n = 1 \rangle$, with n > 1?

Construct a sequence

$$\{w\} = C_1 \subseteq C_2 \subseteq C_3 \subseteq \ldots \subseteq C_k \subseteq C_{k+1} \subseteq \ldots$$
$$C_{i+1} = C_i \cup \{xy \mid x \in W(C_i) \& yx \in C_i\} \cup \{zx \mid x \in W(C_i) \& xz \in C_i\}$$

 $W(C_i) = \{x \in A^+ : x \text{ is a prefix of some word from } C_i \text{ and } x \text{ is a suffix of some word from } C_i\}$

Construct a sequence

$$\{w\} = C_1 \subseteq C_2 \subseteq C_3 \subseteq \ldots \subseteq C_k \subseteq C_{k+1} \subseteq \ldots$$
$$C_{i+1} = C_i \cup \{xy \mid x \in W(C_i) \& yx \in C_i\} \cup \{zx \mid x \in W(C_i) \& xz \in C_i\}$$

 $W(C_i) = \{x \in A^+ : x \text{ is a prefix of some word from } C_i \text{ and } x \text{ is a suffix of some word from } C_i\}$

Choose k such that $C_k = C_{k+1}$.

Construct a sequence

$$\{w\} = C_1 \subseteq C_2 \subseteq C_3 \subseteq \ldots \subseteq C_k \subseteq C_{k+1} \subseteq \ldots$$

 $C_{i+1} = C_i \cup \{xy \mid x \in W(C_i) \& yx \in C_i\} \cup \{zx \mid x \in W(C_i) \& xz \in C_i\}$

 $W(C_i) = \{x \in A^+ : x \text{ is a prefix of some word from } C_i \text{ and } x \text{ is a suffix of some word from } C_i\}$

Choose k such that $C_k = C_{k+1}$.

 $\Delta = \{ u \in W(C_k) : \text{no proper prefix of } u \text{ is in } W(C_k) \}$

Construct a sequence

$$\{w\} = C_1 \subseteq C_2 \subseteq C_3 \subseteq \ldots \subseteq C_k \subseteq C_{k+1} \subseteq \ldots$$

 $C_{i+1} = C_i \cup \{xy \mid x \in W(C_i) \& yx \in C_i\} \cup \{zx \mid x \in W(C_i) \& xz \in C_i\}$

 $W(C_i) = \{x \in A^+ : x \text{ is a prefix of some word from } C_i \text{ and } x \text{ is a suffix of some word from } C_i\}$

Choose k such that $C_k = C_{k+1}$.

 $\Delta = \{ u \in W(C_k) : \text{no proper prefix of } u \text{ is in } W(C_k) \}$

B - an alphabet in bijection with Δ via a bijection $\phi : \Delta \rightarrow B$. Δ is a prefix code \Rightarrow this extends to a homomorphism $\phi : \Delta^* \rightarrow B^*$.

Construct a sequence

$$\{w\} = C_1 \subseteq C_2 \subseteq C_3 \subseteq \ldots \subseteq C_k \subseteq C_{k+1} \subseteq \ldots$$

 $C_{i+1} = C_i \cup \{xy \mid x \in W(C_i) \& yx \in C_i\} \cup \{zx \mid x \in W(C_i) \& xz \in C_i\}$

 $W(C_i) = \{x \in A^+ : x \text{ is a prefix of some word from } C_i \text{ and } x \text{ is a suffix of some word from } C_i\}$

Choose k such that $C_k = C_{k+1}$.

 $\Delta = \{ u \in W(C_k) : \text{no proper prefix of } u \text{ is in } W(C_k) \}$

B - an alphabet in bijection with Δ via a bijection $\phi : \Delta \rightarrow B$. Δ is a prefix code \Rightarrow this extends to a homomorphism $\phi : \Delta^* \rightarrow B^*$.

Theorem (Adjan 1966). The group of units *G* of *M* is defined by the presentation $\langle B | \phi(w) = 1 \rangle$.

A - alphabet, $R \subseteq A^* \times A^*$ - rewrite rules, $\langle A \mid R \rangle$ - rewriting system Write $r = (r_{+1}, r_{-1}) \in R$ as $r_{+1} \to r_{-1}$.

Define a binary relation \rightarrow_{R} on A^* by

 $u \rightarrow_{R} v \Leftrightarrow u = w_1 r_{+1} w_2$ and $v = w_1 r_{-1} w_2$

for some $(r_{+1}, r_{-1}) \in R$ and $w_1, w_2 \in A^*$.

A - alphabet, $R \subseteq A^* \times A^*$ - rewrite rules, $\langle A \mid R \rangle$ - rewriting system Write $r = (r_{+1}, r_{-1}) \in R$ as $r_{+1} \to r_{-1}$.

Define a binary relation \rightarrow_{R} on A^* by

 $u \rightarrow_{R} v \Leftrightarrow u = w_1 r_{+1} w_2$ and $v = w_1 r_{-1} w_2$

for some $(r_{+1}, r_{-1}) \in R$ and $w_1, w_2 \in A^*$.

 $\stackrel{*}{\longrightarrow}_{R} \text{ is the transitive and reflexive closure of } \rightarrow_{R}.$ $\stackrel{*}{\longrightarrow}_{R} \text{ is the reflexive transitive symmetric closure of } \rightarrow_{R}.$

A - alphabet, $R \subseteq A^* \times A^*$ - rewrite rules, $\langle A \mid R \rangle$ - rewriting system Write $r = (r_{+1}, r_{-1}) \in R$ as $r_{+1} \to r_{-1}$.

Define a binary relation \rightarrow_{R} on A^* by

 $u \rightarrow_{R} v \Leftrightarrow u = w_1 r_{+1} w_2$ and $v = w_1 r_{-1} w_2$

for some $(r_{+1}, r_{-1}) \in R$ and $w_1, w_2 \in A^*$.

 $\stackrel{*}{\xrightarrow{}}_{R}$ is the transitive and reflexive closure of \rightarrow_{R} . $\stackrel{*}{\Rightarrow}_{R}_{R}$ is the reflexive transitive symmetric closure of \rightarrow_{R} .

Noetherian: No infinite descending chain

$$w_1 \xrightarrow{R} w_2 \xrightarrow{R} \cdots \xrightarrow{R} w_n \xrightarrow{R} \cdots$$

Confluent: Whenever $u \xrightarrow{*}_{R} v \text{ and } u \xrightarrow{*}_{R} v'$ there is a word $w \in A^*$: $v \xrightarrow{*}_{R} w \text{ and } v' \xrightarrow{*}_{R} w$

A - alphabet, $R \subseteq A^* \times A^*$ - rewrite rules, $\langle A \mid R \rangle$ - rewriting system Write $r = (r_{+1}, r_{-1}) \in R$ as $r_{+1} \to r_{-1}$.

Define a binary relation \rightarrow_{R} on A^* by

 $u \rightarrow_{R} v \Leftrightarrow u = w_1 r_{+1} w_2$ and $v = w_1 r_{-1} w_2$

for some $(r_{+1}, r_{-1}) \in R$ and $w_1, w_2 \in A^*$.

 $\stackrel{*}{\xrightarrow{}}_{R}$ is the transitive and reflexive closure of \rightarrow_{R} . $\stackrel{*}{\Rightarrow}_{R}_{R}$ is the reflexive transitive symmetric closure of \rightarrow_{R} .

Noetherian: No infinite descending chain

Confluent: Whenever

 $W_1 \xrightarrow{R} W_2 \xrightarrow{R} \cdots \xrightarrow{R} W_n \xrightarrow{R} \cdots$

 $u \xrightarrow{\ast}_{R} v \text{ and } u \xrightarrow{\ast}_{R} v'$ there is a word $w \in A^*$: $v \xrightarrow{\ast}_{P} w \text{ and } v' \xrightarrow{\ast}_{P} w$

Normal forms: If $\langle A \mid R \rangle$ is noetherian and confluent then each $\overset{*}{\underset{R}{\to}}$ -class contains a unique word which is irreducible with respect to \rightarrow_{R} .

Zhang's method

$$M \cong \langle A \mid w = 1 \rangle, \ \ G \cong \langle B \mid \phi(w) = 1 \rangle \text{ where } \phi : \Delta^* \to B^*.$$

Zhang's infinite rewriting system

Shortlex order: For $x, y \in A^*$ write x < y if |x| < |y| or |x| = |y| and $x <_{lex} y$.

Theorem (Zhang 1992) Let $R = \{(w, 1)\}$ and $S = \{(u, v) : u, v \in \Delta^*, v < u \text{ and } \phi(u) = \phi(v) \text{ in } G\}.$

Then *S* is a noetherian and confluent, and $\Leftrightarrow_R = \bigotimes_S$. That is, the presentation $\langle A | w = 1 \rangle$ is equivalent to the noetherian confluent presentation $\langle A | S \rangle$.

 $M \cong \langle A \mid w = 1 \rangle, \quad G \cong \langle B \mid \phi(w) = 1 \rangle \text{ where } \phi : \Delta^* \to B^*.$ Theorem (Zhang 1992) $S = \{(u, v) : u, v \in \Delta^*, u > v \text{ and } \phi(u) = \phi(v) \text{ in } G\}.$ $\langle A \mid w = 1 \rangle \text{ is equivalent to the noetherian confluent presentation } \langle A \mid S \rangle.$

We call $x \in A^*$ irreducible if no rewrite rule \rightarrow_s can be applied to it. We use \overline{x} to denote the unique irreducible word equal to x in M and call \overline{x} the normal form of x.

 $M \cong \langle A \mid w = 1 \rangle, \quad G \cong \langle B \mid \phi(w) = 1 \rangle \text{ where } \phi : \Delta^* \to B^*.$ Theorem (Zhang 1992) $S = \{(u, v) : u, v \in \Delta^*, u > v \text{ and } \phi(u) = \phi(v) \text{ in } G\}.$ $\langle A \mid w = 1 \rangle \text{ is equivalent to the noetherian confluent presentation } \langle A \mid S \rangle.$

We call $x \in A^*$ irreducible if no rewrite rule \rightarrow_s can be applied to it. We use \overline{x} to denote the unique irreducible word equal to x in M and call \overline{x} the normal form of x. Normal forms can be computed with the following algorithm:

Input: $x \in A^*$. **Output:** Yes if x is irreducible, and otherwise outputs a word $y \in A^*$ with y < x and $y \stackrel{*}{\rightarrow}_s x$.

 $M \cong \langle A \mid w = 1 \rangle, \quad G \cong \langle B \mid \phi(w) = 1 \rangle \text{ where } \phi : \Delta^* \to B^*.$ Theorem (Zhang 1992) $S = \{(u, v) : u, v \in \Delta^*, u > v \text{ and } \phi(u) = \phi(v) \text{ in } G\}.$ $\langle A \mid w = 1 \rangle \text{ is equivalent to the noetherian confluent presentation } \langle A \mid S \rangle.$

We call $x \in A^*$ irreducible if no rewrite rule \rightarrow_s can be applied to it. We use \overline{x} to denote the unique irreducible word equal to x in M and call \overline{x} the normal form of x. Normal forms can be computed with the following algorithm:

Input: $x \in A^*$. **Output:** Yes if x is irreducible, and otherwise outputs a word $y \in A^*$ with y < x and $y \stackrel{*}{\Rightarrow}_s x$.

• List the pairs $(u_1, v_1), (u_2, v_2), \ldots$ with $u_i, v_i \in \Delta^*, u_i > v_i$ and such that $|u_i| \leq |x|$ and $\phi(u_i) = \phi(v_i)$ in *G*.

 $M \cong \langle A \mid w = 1 \rangle, \quad G \cong \langle B \mid \phi(w) = 1 \rangle \text{ where } \phi : \Delta^* \to B^*.$ Theorem (Zhang 1992) $S = \{(u, v) : u, v \in \Delta^*, u > v \text{ and } \phi(u) = \phi(v) \text{ in } G\}.$ $\langle A \mid w = 1 \rangle \text{ is equivalent to the noetherian confluent presentation } \langle A \mid S \rangle.$

We call $x \in A^*$ irreducible if no rewrite rule \rightarrow_s can be applied to it. We use \overline{x} to denote the unique irreducible word equal to x in M and call \overline{x} the normal form of x. Normal forms can be computed with the following algorithm:

Input: $x \in A^*$. **Output:** Yes if x is irreducible, and otherwise outputs a word $y \in A^*$ with y < x and $y \stackrel{*}{\Rightarrow}_s x$.

- List the pairs $(u_1, v_1), (u_2, v_2), \ldots$ with $u_i, v_i \in \Delta^*, u_i > v_i$ and such that $|u_i| \leq |x|$ and $\phi(u_i) = \phi(v_i)$ in *G*.
- For each pair (u_i, v_i) check whether this relation can be applied to x.

Word problem using Zhang normal form

Theorem (Adjan 1966, Zhang 1992)

The word problem is decidable for special one relator monoids $\langle A | w = 1 \rangle$. **Proof:** Let *M* be the special one-relator monoid $\langle A | w = 1 \rangle$. Compute the set Δ and the presentation $\langle B | \phi(w) = 1 \rangle$ for *G*.

Given $u, v \in A^*$, compute the normal forms \overline{u} and \overline{v} . Then u = v in M if and only if $\overline{u} = \overline{v}$ in A^* . \Box

Divisibility problem using Zhang normal form

$$M \cong \langle A \mid w = 1 \rangle, \ G \cong \langle B \mid \phi(w) = 1 \rangle$$
 where $\phi : \Delta^* \to B^*$.

For two words $u, v \in A^*$ we say u is left divisible by v if there is a word $z \in A^*$ such that [u] = [vz].

Set $I = \{x \in A^+ : xy \in \Delta \text{ for some } y \in A^*\}.$

Lemma (Zhang 1992)

Let $u, v \in A^*$ be irreducible. Write v = v'v'' where v'' is the longest suffix of v in I^* . Then

u is left divisible by $v \Leftrightarrow u$ is left divisible by v' $\Leftrightarrow \exists z \in A^*$ such that u = v'z.

Divisibility problem using Zhang normal form

$$M \cong \langle A \mid w = 1 \rangle, \ G \cong \langle B \mid \phi(w) = 1 \rangle$$
 where $\phi : \Delta^* \to B^*$.

For two words $u, v \in A^*$ we say u is left divisible by v if there is a word $z \in A^*$ such that [u] = [vz].

Set $I = \{x \in A^+ : xy \in \Delta \text{ for some } y \in A^*\}.$

Lemma (Zhang 1992)

Let $u, v \in A^*$ be irreducible. Write v = v'v'' where v'' is the longest suffix of v in I^* . Then

```
u is left divisible by v \Leftrightarrow u is left divisible by v'
\Leftrightarrow \exists z \in A^* such that u = v'z.
```

Theorem (Makanin 1966)

The left divisibility problem is decidable for special one relator monoids $\langle A \mid w = 1 \rangle$.

Conjugacy problem using Zhang normal form

Theorem (Zhang 1992)

Let *M* be the monoid defined by $\langle A | w = 1 \rangle$ and let *G* be the group of units of *M*. If *G* has decidable conjugacy problem then *M* has decidable conjugacy problem.

Conjugacy problem using Zhang normal form

Theorem (Zhang 1992)

Let *M* be the monoid defined by $\langle A | w = 1 \rangle$ and let *G* be the group of units of *M*. If *G* has decidable conjugacy problem then *M* has decidable conjugacy problem.

Proposition (Zhang 1992)

Let *M* be the monoid defined by $\langle A | w = 1 \rangle$ and let *G* be the group of units of *M*. Let $x, y \in A^*$ be irreducible words. Then $x \sim_M y$ if and only if there are words $z_1, z_2, z_3, z_4 \in A^*$ such that either

- $x = z_1 z_2, y = z_3 z_4$ with $z_2 z_1 = z_4 z_3$ in *M*; or
- $x = z_1 z_2$, $y = z_3 z_4$ such that $z_2 z_1$ and $z_4 z_3$ are invertible in *M* and $z_2 z_1 \sim_G z_4 z_3$ in the group of units *G*.

Note: It is decidable whether a word represents an invertible element of $\langle A | w = 1 \rangle$. An irreducible word $x \in A^*$ represents an invertible element if and only if $x \in \Delta^*$.

Geometric consequences

 $M \cong \langle A \mid w = 1 \rangle, \ G \cong \langle B \mid \phi(w) = 1 \rangle$ the group of units

The (right) Cayley graph $\Gamma(M, A)$ of a monoid M generated by a finite set A is the digraph with Vertices: M Directed edges: $x \xrightarrow{a} y$ iff y = xa where $x, y \in M, a \in A$.

The strongly connected components of $\Gamma(M, A)$ are called the Schützenberger graphs.

▶ Zhang (1992): The submonoid $R \le M$ of right invertible elements is isomorphic to a free product $G * C^*$ with *C* finite.

Geometric consequences

 $M \cong \langle A \mid w = 1 \rangle, \ G \cong \langle B \mid \phi(w) = 1 \rangle$ the group of units

The (right) Cayley graph $\Gamma(M, A)$ of a monoid M generated by a finite set A is the digraph with Vertices: M Directed edges: $x \xrightarrow{a} y$ iff y = xa where $x, y \in M, a \in A$.

The strongly connected components of $\Gamma(M, A)$ are called the Schützenberger graphs.

- ▶ Zhang (1992): The submonoid $R \le M$ of right invertible elements is isomorphic to a free product $G * C^*$ with *C* finite.
- Gray & Steinberg (2017): Each Schützenberger graph has at most one arc entering it from outside. All Schützenberger graphs are isomorphic.

Geometric consequences

 $M \cong \langle A \mid w = 1 \rangle, \ G \cong \langle B \mid \phi(w) = 1 \rangle$ the group of units

The (right) Cayley graph $\Gamma(M, A)$ of a monoid M generated by a finite set A is the digraph with Vertices: M Directed edges: $x \xrightarrow{a} y$ iff y = xa where $x, y \in M, a \in A$.

The strongly connected components of $\Gamma(M, A)$ are called the Schützenberger graphs.

- ▶ Zhang (1992): The submonoid $R \le M$ of right invertible elements is isomorphic to a free product $G * C^*$ with *C* finite.
- Gray & Steinberg (2017): Each Schützenberger graph has at most one arc entering it from outside. All Schützenberger graphs are isomorphic.

Corollary. If the group *G* is hyperbolic then the Cayley graph $\Gamma(M, A)$ is hyperbolic.

 $M = \langle A \mid w = i \rangle$

 $\Gamma(M, A)$

Solving equations in $\langle A \mid w = 1 \rangle$

For each of the following classes is solvability of equations is decidable?

- Special one-relator monoids with torsion $\langle A \mid u^n = 1 \rangle$.
- Hyperbolic special one-relator monoids $\langle A \mid w = 1 \rangle$ (those where the group of units *G* is hyperbolic).
- One-relator monoids $\langle A | w = 1 \rangle$ where no proper prefix of w is equal to a proper suffix of w. This is the case that G is trivial e.g. the bicyclic monoid $\langle b, c | bc = 1 \rangle$.

Solving equations in $\langle A \mid w = 1 \rangle$

For each of the following classes is solvability of equations is decidable?

- Special one-relator monoids with torsion $\langle A \mid u^n = 1 \rangle$.
- Hyperbolic special one-relator monoids $\langle A \mid w = 1 \rangle$ (those where the group of units *G* is hyperbolic).
- One-relator monoids ⟨A | w = 1⟩ where no proper prefix of w is equal to a proper suffix of w. This is the case that G is trivial e.g. the bicyclic monoid ⟨b, c | bc = 1⟩.

More generally we have:

Problem: Let *M* be the monoid defined by $\langle A | w = 1 \rangle$ and let *G* be the group of units of *M*. If solvability of equations is decidable in *G*, then does it follow that solvability of equations is decidable in *M*?