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Equations over free monoids

§ A “ ta, b, . . .u - alphabet, Ω “ tX,Y, . . .u - set of variables,
§ Word equation: a pair pL,Rq P pAY Ωq˚ ˆ pAY Ωq˚ written L “ R.
§ System of word equations: tL1 “ R1, . . . ,Lk “ Rku.
§ Solution: a homomorphism σ : pAY Ωq˚ Ñ A˚ leaving A invariant

such that σpLiq “ σpRiq for 1 ď i ď k.

Example
A “ ta, bu, Ω “ tX,Y,Z,Uu

XaUZaU “ YZbXaabY

One solution is given by σ defined by

X ÞÑ abb, Y ÞÑ ab, Z ÞÑ ba, U ÞÑ bab.

Theorem (Makanin (1977)). There is an algorithm which decides whether
a system of equations over the free monoid has a solution.



Equations over finitely presented monoids

xA | Ry “ xa1, . . . , an
looooomooooon

generators

| u1 “ v1, . . . , um “ vm
loooooooooooomoooooooooooon

defining relations

y

§ Defines M “ A˚{ρ where ρ is the smallest congruence on A˚

containing R.
§ For w P A˚ we use rws to denote the element w{ρ P M.
§ Solution to a system of equations tL1 “ R1, . . . ,Lk “ Rku:

a homomorphism σ : pAY Ωq˚ Ñ A˚ leaving A invariant such that
rσpLiqs “ rσpRiqs for 1 ď i ď k.

Fact: If there is an algorithm for solving equations in xA | Ry then M must
have decidable word problem.



Solving equations in one-relator monoids

Longstanding open problem
Is the word problem decidable for one-relator monoids xA | u “ vy?

Question
In which examples / classes of one-relator monoids is solvability of
equations decidable?

Natural classes one might consider:
§ xA | u “ vy where |u| “ |v| - homogeneous presentations.
§ xA | u “ vy where u and v have distinct initial letters and distinct

terminal lettersñ monoid is group embeddable.
§ xA | w “ 1y the so-called ‘special’ one-relator monoids.

Question: Is there an algorithm for solving equations in the bicyclic
monoid xb, c | bc “ 1y?
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Word problem and divisibility problem in xA | w “ 1y

Word problem
Setting Ω “ ∅, for u, v P A˚ we are asking whether u “ v has a solution.

Theorem (Adjan 1966)
The word problem is decidable for special one relator monoids xA | w “ 1y.

Divisibility problem
For two words u, v P A˚ we say u is left divisible by v if there is a word
z P A˚ such that rus “ rvzs.
Setting Ω “ tXu we are asking whether the equation

u “ vX

has a solution.

Theorem (Makanin 1966)
The left divisibility problem is decidable for special one relator monoids
xA | w “ 1y.
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Conjugacy in xA | w “ 1y

Left conjugacy
Set Ω “ tXu. The words u, v P A˚ are left conjugate if the equation

uX “ Xv

has a solution.

Cyclic conjugacy
Set Ω “ tX,Yu. The words u, v P A˚ are cyclically conjugate if the system
of equations

tu “ XY, v “ YXu

has a solution.

Theorem (Otto 1984 & Zhang 1991)
In xA | w “ 1y two words are left conjugate if and only if they are cyclically
conjugate. These define equivalence relations on the monoid.
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The conjugacy problem in xA | w “ 1y

Theorem (Zhang 1989)
Let M be the monoid defined by xA | w “ 1y and let G be the group of units
of M. If G has decidable conjugacy problem then M has decidable conjugacy
problem.

Corollary (Zhang 1989)
The one relator monoids xA | un “ 1y, with n ą 1, have decidable conjugacy
problem.
Proof. Let M the monoid defined by this presentation. By Adjan (1966) G is
a one-relator group with torsion. It follows my Newman (1968) that G has
decidable conjugacy problem, and hence so does M.

Problem: Is solvability of equations decidable in the one relator monoids
xA | un “ 1y, with n ą 1?
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The group of units of M – xA | w “ 1y

Construct a sequence

twu “ C1 Ď C2 Ď C3 Ď . . . Ď Ck Ď Ck`1 Ď . . .

Ci`1 “ Ci Y txy | x P WpCiq & yx P Ciu Y tzx | x P WpCiq & xz P Ciu

WpCiq “ tx P A` : x is a prefix of some word from Ci and
x is a suffix of some word from Ciu

Choose k such that Ck “ Ck`1.

∆ “ tu P WpCkq : no proper prefix of u is in WpCkqu

B - an alphabet in bijection with ∆ via a bijection φ : ∆ Ñ B.
∆ is a prefix codeñ this extends to a homomorphism φ : ∆˚ Ñ B˚.

Theorem (Adjan 1966). The group of units G of M is defined by the
presentation xB | φpwq “ 1y.
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Noetherian confluent rewriting systems
A - alphabet, R Ď A˚ ˆ A˚ - rewrite rules, xA | Ry - rewriting system
Write r “ pr`1, r´1q P R as r`1 Ñ r´1.

Define a binary relationÑ
R

on A˚ by

uÑ
R

v ô u “ w1r`1w2 and v “ w1r´1w2

for some pr`1, r´1q P R and w1,w2 P A˚.

ÝÑ̊R is the transitive and reflexive closure ofÑ
R

.
Ø̊R is the reflexive transitive symmetric closure ofÑ

R
.

Noetherian: No infinite descending
chain

w1ÑR
w2ÑR

¨ ¨ ¨Ñ
R

wnÑR
¨ ¨ ¨

Confluent: Whenever

uÝÑ̊R v and uÝÑ̊R v1

there is a word w P A˚:

vÝÑ̊R w and v1ÝÑ̊R w

Normal forms: If xA | Ry is noetherian and confluent then each Ø̊R -class
contains a unique word which is irreducible with respect toÑ

R
.
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Zhang’s method

M – xA | w “ 1y, G – xB | φpwq “ 1y where φ : ∆˚ Ñ B˚.

Zhang’s infinite rewriting system
Shortlex order: For x, y P A˚ write x ă y if |x| ă |y| or |x| “ |y| and x ălex y.

Theorem (Zhang 1992)
Let R “ tpw, 1qu and

S “ tpu, vq : u, v P ∆˚, v ă u and φpuq “ φpvq in Gu.

Then S is a noetherian and confluent, and Ø̊R “ Ø̊S .

That is, the presentation xA | w “ 1y is equivalent to the noetherian confluent
presentation xA | Sy.



Computing normal forms

M – xA | w “ 1y, G – xB | φpwq “ 1y where φ : ∆˚ Ñ B˚.

Theorem (Zhang 1992)
S “ tpu, vq : u, v P ∆˚, u ą v and φpuq “ φpvq in Gu.
xA | w “ 1y is equivalent to the noetherian confluent presentation xA | Sy.

We call x P A˚ irreducible if no rewrite ruleÑ
S

can be applied to it. We use
x to denote the unique irreducible word equal to x in M and call x the normal
form of x.

Normal forms can be computed with the following algorithm:

Input: x P A˚.
Output: Yes if x is irreducible, and otherwise outputs a word y P A˚ with
y ă x and y Ø̊S x.

§ List the pairs pu1, v1q, pu2, v2q, . . . with ui, vi P ∆˚, ui ą vi and such
that |ui| ď |x| and φpuiq “ φpviq in G.

§ For each pair pui, viq check whether this relation can be applied to x.
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Word problem using Zhang normal form

Theorem (Adjan 1966, Zhang 1992)
The word problem is decidable for special one relator monoids xA | w “ 1y.
Proof: Let M be the special one-relator monoid xA | w “ 1y. Compute the
set ∆ and the presentation xB | φpwq “ 1y for G.

Given u, v P A˚, compute the normal forms u and v. Then u “ v in M if and
only if u “ v in A˚.



Divisibility problem using Zhang normal form

M – xA | w “ 1y, G – xB | φpwq “ 1y where φ : ∆˚ Ñ B˚.

For two words u, v P A˚ we say u is left divisible by v if there is a word
z P A˚ such that rus “ rvzs.

Set I “ tx P A` : xy P ∆ for some y P A˚u.

Lemma (Zhang 1992)
Let u, v P A˚ be irreducible. Write v “ v1v2 where v2 is the longest suffix of
v in I˚. Then

u is left divisible by v ô u is left divisible by v1

ô Dz P A˚ such that u “ v1z.

Theorem (Makanin 1966)
The left divisibility problem is decidable for special one relator monoids
xA | w “ 1y.
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Conjugacy problem using Zhang normal form

Theorem (Zhang 1992)
Let M be the monoid defined by xA | w “ 1y and let G be the group of units
of M. If G has decidable conjugacy problem then M has decidable conjugacy
problem.

Proposition (Zhang 1992)
Let M be the monoid defined by xA | w “ 1y and let G be the group of units
of M. Let x, y P A˚ be irreducible words. Then x „M y if and only if there
are words z1, z2, z3, z4 P A˚ such that either

§ x “ z1z2, y “ z3z4 with z2z1 “ z4z3 in M; or
§ x “ z1z2, y “ z3z4 such that z2z1 and z4z3 are invertible in M and

z2z1 „G z4z3 in the group of units G.

Note: It is decidable whether a word represents an invertible element of
xA | w “ 1y. An irreducible word x P A˚ represents an invertible element if
and only if x P ∆˚.
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Geometric consequences

M – xA | w “ 1y, G – xB | φpwq “ 1y the group of units

The (right) Cayley graph ΓpM,Aq of a monoid M generated by a finite set A
is the digraph with
Vertices: M Directed edges: x a

ÝÑ y iff y “ xa where x, y P M, a P A.

The strongly connected components of ΓpM,Aq are called the
Schützenberger graphs.

§ Zhang (1992): The submonoid R ď M of right invertible elements is
isomorphic to a free product G ˚ C˚ with C finite.

§ Gray & Steinberg (2017): Each Schützenberger graph has at most one
arc entering it from outside. All Schützenberger graphs are isomorphic.

Corollary. If the group G is hyperbolic then the Cayley graph ΓpM,Aq is
hyperbolic.
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Corollary. If the group G is hyperbolic then the Cayley graph ΓpM,Aq is
hyperbolic.
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Solving equations in xA | w “ 1y

For each of the following classes is solvability of equations is decidable?
§ Special one-relator monoids with torsion xA | un “ 1y.
§ Hyperbolic special one-relator monoids xA | w “ 1y (those where the

group of units G is hyperbolic).
§ One-relator monoids xA | w “ 1y where no proper prefix of w is equal

to a proper suffix of w. This is the case that G is trivial e.g. the bicyclic
monoid xb, c | bc “ 1y.

More generally we have:

Problem: Let M be the monoid defined by xA | w “ 1y and let G be the
group of units of M. If solvability of equations is decidable in G, then
does it follow that solvability of equations is decidable in M?
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