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The word problem

Definition
A monoid M with a finite generating set A has decidable word problem if
there is an algorithm which for any two words w1,w2 ∈ A∗ decides whether
or not they represent the same element of M.

Example. M = Mon⟨a,b ∣ ba = ab⟩ has decidable word problem.
Normal forms = {aibj ∶ i, j ≥ 0}.

Some history
There are finitely presented monoids / groups with undecidable word
problem.

▸ Markov (1947) and Post (1947), Turing (1950), Novikov (1955) and
Boone (1958)

Longstanding open problem
Is the word problem decidable for one-relator monoids Mon⟨A ∣ u = v⟩?



Word problem for one-relator groups and monoids

Groups Monoids Inverse monoids

Gp⟨A ∣w = 1⟩ Mon⟨A ∣ u = v⟩ Inv⟨A ∣w = 1⟩
FG(A)/⟪w⟫ A∗/⟪(u, v)⟫ FIM(A)/⟪(w,1)⟫

Theorem (Magnus (1932))
The word problem is decidable for one-relator groups.

One-relator monoids
▸ Word problem proved decidable in several cases by Adjan (1966),

Lallament (1974), Adjan & Oganesyan (1987).

One-relator inverse monoids
▸ Word problem proved decidable in several cases e.g. when w satisfies...

▸ Dyck word [Birget, Margolis, Meakin, 1993, 1994]
▸ w-strictly positive [Ivanov, Margolis, Meakin, 2001]
▸ Adjan or Baumslag-Solitar type [Margolis, Meakin, Šuniḱ, 2005]
▸ Sparse word [Hermiller, Lindblad, Meakin, 2010]
▸ Certain small cancellation conditions [A. Juhász, 2012, 2014]
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Submonoid membership problem

G - a finitely generated group with a finite group generating set A.
π ∶ (A ∪ A−1)∗ → G – the canonical monoid homomorphism.
T – a finitely generated submonoid of G.

The membership problem for T within G is decidable if there is an algorithm
which solves the following decision problem:

INPUT: A word β ∈ (A ∪ A−1)∗.
QUESTION: π(β) ∈ T?

There is also the uniform submonoid membership problem which takes
β,α1, α2, . . . , αm ∈ (A ∪ A−1)∗ and asks π(β) ∈ Mon⟨π(α1), . . . , π(αm)⟩?

▸ The submonoid membership problem is decidable in free groups
FG(A) = Gp⟨A ∣ ⟩ by Benois (1969).

▸ What about for one-relator groups Gp⟨A ∣w = 1⟩?
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Right-angled Artin groups
Definition
The right-angled Artin group A(Γ) associated with the graph Γ is

Gp⟨VΓ ∣ uv = vu if and only if {u, v} ∈ EΓ⟩.

Example

a

T b c

d e

A r Gp a b e d e ac ca de ed
ab ba be cb
bd db y



Right-angled Artin subgroups of one-relator groups

Theorem (RDG (2019))

A(Γ) embeds into some one-relator group⇐⇒ Γ is a finite forest.

Lohrey & Steinberg (2008) proved that A(P4) contains a finitely generated
submonoid T in which membership is undecidable, where P4 is the graph

a b c d

Theorem (RDG (2019))
There is a one-relator group G = Gp⟨A ∣w = 1⟩ with a fixed finitely generated
submonoid N ≤ G such that the membership problem for N within G is
undecidable.

Example
Gp⟨a, t ∣ atat−1a−1ta−1t−1 = 1⟩ is a one-relator group with this property.



Proof

A Pa Gpf A l w D

0 ACM

one

▸ Since P4 is a tree there is a one-relator group G = Gp⟨A ∣w = 1⟩ and an
embedding θ ∶ A(P4) ↪ G.

▸ Then N = θ(T) is a finitely generated submonoid of G in which
membership is undecidable.
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Inverse monoid presentations
An inverse monoid is a monoid M such that for every x ∈ M there is a unique
x−1 ∈ M such that xx−1x = x and x−1xx−1 = x−1.

For all x, y ∈ M we have

x = xx−1x, (x−1)−1 = x, (xy)−1 = y−1x−1, xx−1yy−1 = yy−1xx−1 (†)

Inv⟨A ∣ ui = vi (i ∈ I)⟩ = Mon⟨A ∪ A−1 ∣ ui = vi (i ∈ I) ∪ (†)⟩
where ui, vi ∈ (A ∪ A−1)∗ and x, y range over all words from (A ∪ A−1)∗.

Free inverse monoid FIM(A) = Inv⟨A ∣ ⟩

Munn (1974)
Elements of FIM(A) can be
represented using Munn trees. e.g. in
FIM(a,b) we have u = w where

u = aa−1bb−1ba−1abb−1

w = bbb−1a−1ab−1aa−1b



One-relator inverse monoids

A general construction

Theorem (RDG (2019))
Let G = Gp⟨B ∣ u1 = 1, . . . ,un = 1⟩ be a finitely presented group and let N be
a finitely generated submonoid of G. Then there is a finitely presented
inverse monoid

MG,N = Inv⟨B, t ∣ v1 = 1, . . . , vn = 1⟩

with the same number of defining relations, such that
MG,N has decidable word problem ⇐⇒ The membership problem for

N within G is decidable

Theorem (RDG (2019))
There is a one-relator inverse monoid Inv⟨A ∣w = 1⟩ with undecidable word
problem.
Proof: Apply the general construction above with a pair (G,N) where G is a
one-relator group and N ≤ G is a finitely generated submonoid in which
membership is undecidable.
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Finite complete presentations

M = Mon⟨A ∣ u1 = v1, u2 = v2, . . . ,uk = vk⟩

▸ w ∈ A∗ is irreducible if it contains no ui.
▸ The presentation is complete if there is no infinite sequence

w1 → w2 → w3 → . . .

with wi+1 obtained from wi by applying a relation ur → vr, and each
element of the monoid M is represented by a unique irreducible word.

Example (Free commutative monoid)
Mon⟨a,b ∣ ba = ab⟩, Normal forms (irreducibles) = {aibj ∶ i, j ≥ 0}

Example (Bicyclic monoid)
Mon⟨b, c ∣ bc = 1⟩, Normal forms (irreducibles) = {cibj ∶ i, j ≥ 0}

Important basic fact: If a monoid M admits a finite complete presentation,
then M has decidable word problem.



Example of Kupar and Narendran (1985)

▸ P1 = Mon⟨a,b ∣ aba = bab⟩
Is not a complete presentation since irreducibles not unique

�� ��

ababa

babba abbab

However
▸ P2 = Mon⟨a,b, c ∣ ab = c, ca = bc,bcb = cc, ccb = acc⟩
▸ P2 is a complete presentation and defines the same monoid as P1.

Conclusion: The one-relator monoid Mon⟨a,b ∣ aba = bab⟩ admits a finite
complete presentation.



One-relator monoids

Open problem
Does every one-relator monoid Mon⟨A ∣ u = v⟩ admit a finite complete
presentation?

▸ Of course, a positive answer would solve the word problem for all
one-relator monoids

Anick-Groves-Squier Theorem (Anick 1986)
If M = Mon⟨A ∣ R⟩ admits a finite complete presentation then M satisfies the
topological finiteness property F∞.

This motivates the following question of Kobayashi (2000)

Question: Is every one-relator monoid Mon⟨A ∣ u = v⟩ of type F∞?



Groups and topology

X - a space (path connected)

Fundamental group
π1(X) = { homotopy classes of
loops }

Higher homotopy groups
πn(X) = { homotopy classes of
maps Sn → X }
Sn the n-sphere

I

H

X is called aspherical if πn(X) is trivial for n ≠ 1.

Theorem (Hurewicz (1936)) An aspherical space is determined up to
homotopy equivalence by its fundamental group.



Classifying spaces of groups

CW complex - a space equipped with a
sequence of subspaces

X0 ⊆ X1 ⊆ X2 ⊆ . . .

The n-skeleton Xn is obtained from Xn−1 by
attaching n-cells Bn via maps ϕ ∶ Sn−1 → Xn−1.

Definition
A classifying space Y for a group G is an aspherical CW complex with
fundamental group G.

▸ Classifying spaces exist and are unique up to homotopy equivalence.

Whitehead theorem implies: a CW complex is aspherical⇔ its universal
cover is contractible.
If Y is a classifying space for G then the universal cover of Y is a
free G-CW complex which is contractible.



Free group

G La b FG a b

11 Bouquet of
circles

nb

1 11 O.O
n b

classifying space
Y for G

Universal cover X is
a contractible free G CWcomplex



Free abelian group

G Gp asb aba b D E 27 27

Tonsa

b n n b

l
Classifying space
Y for G

Universal cover X IR is
a contractible free G CWcomplex



Finiteness properties

Property Fn (C. T. C. Wall (1965))

▸ G is of type Fn if there is a classifying space with only finitely many
k-cells for each k ≤ n.

▸ G is of type F∞ if there is a classifying space with finitely many cells in
all dimensions.

Examples

▸ G is of type F1 ⇔ it is finitely generated.
▸ G is of type F2 ⇔ it is finitely presented.
▸ Z ×Z is of type F∞ (finitely many cells in every dimension).



Finiteness properties of monoids

Definition (RG & Steinberg (2017))
An equivariant classifying space for a monoid M is a free M-CW complex
which is contractible.

▸ Equivariant classifying spaces exist and are unique up to M-homotopy
equivalence.

Property Fn

M is of type Fn if there is an equivariant classifying space X for M such that
the set of k-cells is a finitely generated free M-set for all k ≤ n.

▸ For finitely presented monoids Fn is equivalent to the homological
finiteness property FPn.



Bicyclic monoid B b c be _I

b b b b b

t.n.mnccbcb'cb3cb4cbx x x xx
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X x x x x x



One-relator monoids

Lyndon (1950): Constructed classifying spaces for arbitrary one-relator
groups, which show that every one-relator group Gp⟨A ∣w = 1⟩ is of type F∞.

Theorem (RG & Steinberg 2019)
Every one relator monoid Mon⟨A ∣ u = v⟩ is of type F∞.

▸ We prove this result by constructing equivariant classifying spaces for
arbitrary one-relator monoids.

▸ This answers positively the question of Kobayahi (2000).
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More results for one-relator inverse monoids

Key question
For which words w ∈ (A ∪ A−1)∗ does Inv⟨A ∣w = 1⟩ have decidable word
problem? In particular is the word problem always decidable when w is
(a) reduced or (b) cyclically reduced?

Reduced vs cyclically reduced words
aba−1ab - not reduced
abba−1 - reduced but not cyclically reduced
aba−1b−1 - cyclically reduced

Definition
The prefix submonoid Pw of Gp⟨A ∣w = 1⟩ is the submonoid generated by all
prefixes of the word w.

Theorem (Ivanov, Margolis and Meakin (2001))
Let w ∈ (A ∪ A−1)∗ be a cyclically reduced word. If Gp⟨A ∣w = 1⟩ has
decidable prefix membership problem (e.g. can decide membership in Pw)
then Inv⟨A ∣w = 1⟩ has decidable word problem.



Prefix membership problem via units
Theorem (Dolinka & RDG (2019))
Let w ∈ (A ∪ A−1)∗ such that Inv⟨A ∣w = 1⟩ is E-unitary (e.g. true if w is
cyclically reduced). Suppose that there is a finite set of words
U = {u1, . . . ,uk} ⊆ (A ∪ A−1)∗ such that

▸ each word in U represents an invertible element of Inv⟨A ∣w = 1⟩,
▸ w decomposes as w ≡ w1w2 . . .wn where each wi ∈ U ∪U−1, and
▸ each ui contains a letter that does not appear in any other uj.

Then Gp⟨A ∣w = 1⟩ has decidable prefix membership problem, and
Inv⟨A ∣w = 1⟩ has decidable word problem.

Example (Margolis, Meakin and Stephen (1987))

M = Inv⟨a,b, c,d ∣ (abcd)(acd)(ad)(abbcd)(acd) = 1⟩
= Inv⟨a,b, c,d ∣ (aba−1)(aca−1)(ad)(aca−1)(ad)(ad)
(aba−1)(aba−1)(aca−1)(ad)(aca−1)(ad) = 1⟩.

where aba−1, aca−1 and ad are all invertible in M. Hence M has decidable
word problem.
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