One-relator groups, monoids and inverse semigroups

Robert D. Gray¹

ICSAA 2019, Cochin University of Science & Technology

¹Research supported by the EPSRC grant EP/N033353/1 "Special inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem".

The word problem

Definition

A monoid *M* with a finite generating set *A* has decidable word problem if there is an algorithm which for any two words $w_1, w_2 \in A^*$ decides whether or not they represent the same element of *M*.

Example. $M = \text{Mon}\langle a, b | ba = ab \rangle$ has decidable word problem. Normal forms = $\{a^i b^j : i, j \ge 0\}$.

Some history

There are finitely presented monoids / groups with undecidable word problem.

 Markov (1947) and Post (1947), Turing (1950), Novikov (1955) and Boone (1958)

Longstanding open problem

Is the word problem decidable for one-relator monoids $Mon\langle A | u = v \rangle$?

Word problem for one-relator groups and monoids

Groups	Monoids	Inverse monoids
$Gp\langle A \mid w = 1 \rangle$ FG(A)/ $\langle \langle w \rangle \rangle$	$ \begin{array}{c} \operatorname{Mon}\langle A \mid u = v \rangle \\ A^* / \langle \langle (u, v) \rangle \rangle \end{array} $	$ \frac{\operatorname{Inv}\langle A \mid w = 1 \rangle}{\operatorname{FIM}(A) / \langle\!\langle (w, 1) \rangle\!\rangle} $

Theorem (Magnus (1932))

The word problem is decidable for one-relator groups.

One-relator monoids

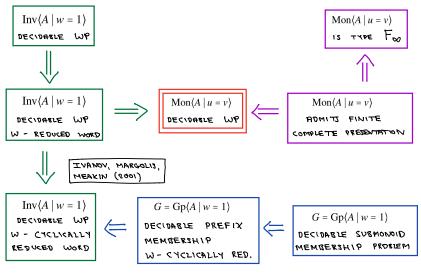
 Word problem proved decidable in several cases by Adjan (1966), Lallament (1974), Adjan & Oganesyan (1987).

One-relator inverse monoids

- Word problem proved decidable in several cases e.g. when *w* satisfies...
 - Dyck word [Birget, Margolis, Meakin, 1993, 1994]
 - w-strictly positive [Ivanov, Margolis, Meakin, 2001]
 - Adjan or Baumslag-Solitar type [Margolis, Meakin, Šunik, 2005]
 - Sparse word [Hermiller, Lindblad, Meakin, 2010]
 - Certain small cancellation conditions [A. Juhász, 2012, 2014]

INVERSE MONOIDS

MONOIDS



GROUPS

Submonoid membership problem

G - a finitely generated group with a finite group generating set *A*. $\pi : (A \cup A^{-1})^* \to G$ – the canonical monoid homomorphism. *T* – a finitely generated submonoid of *G*.

The membership problem for T within G is decidable if there is an algorithm which solves the following decision problem:

INPUT: A word $\beta \in (A \cup A^{-1})^*$. QUESTION: $\pi(\beta) \in T$?

Submonoid membership problem

G - a finitely generated group with a finite group generating set *A*. $\pi : (A \cup A^{-1})^* \to G$ – the canonical monoid homomorphism. *T* – a finitely generated submonoid of *G*.

The membership problem for T within G is decidable if there is an algorithm which solves the following decision problem:

INPUT: A word $\beta \in (A \cup A^{-1})^*$. QUESTION: $\pi(\beta) \in T$?

There is also the uniform submonoid membership problem which takes $\beta, \alpha_1, \alpha_2, \ldots, \alpha_m \in (A \cup A^{-1})^*$ and asks $\pi(\beta) \in Mon(\pi(\alpha_1), \ldots, \pi(\alpha_m))$?

- The submonoid membership problem is decidable in free groups $FG(A) = Gp\langle A \mid \rangle$ by Benois (1969).
- What about for one-relator groups $Gp\langle A | w = 1 \rangle$?

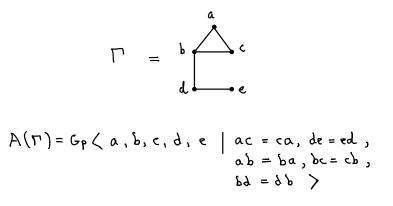
Right-angled Artin groups

Definition

The right-angled Artin group $A(\Gamma)$ associated with the graph Γ is

Gp $\langle V\Gamma | uv = vu$ if and only if $\{u, v\} \in E\Gamma \rangle$.

Example



Right-angled Artin subgroups of one-relator groups

Theorem (RDG (2019))

 $A(\Gamma)$ embeds into some one-relator group $\iff \Gamma$ is a finite forest.

Lohrey & Steinberg (2008) proved that $A(P_4)$ contains a finitely generated submonoid *T* in which membership is undecidable, where P_4 is the graph

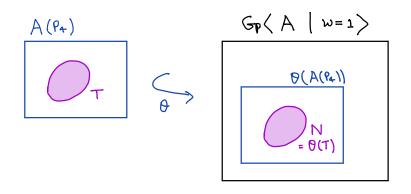
Theorem (RDG (2019))

There is a one-relator group G = Gp(A | w = 1) with a fixed finitely generated submonoid $N \le G$ such that the membership problem for N within G is undecidable.

Example

 $\operatorname{Gp}(a, t | atat^{-1}a^{-1}ta^{-1}t^{-1} = 1)$ is a one-relator group with this property.

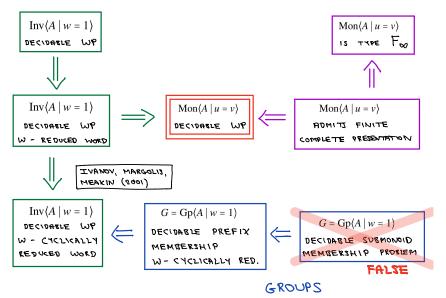
Proof



- Since P_4 is a tree there is a one-relator group $G = \text{Gp}\langle A \mid w = 1 \rangle$ and an embedding $\theta : A(P_4) \hookrightarrow G$.
- Then $N = \theta(T)$ is a finitely generated submonoid of *G* in which membership is undecidable. \Box

INVERSE MONOIDS

MONOIDS



Inverse monoid presentations

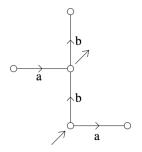
An inverse monoid is a monoid M such that for every $x \in M$ there is a unique $x^{-1} \in M$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$.

For all $x, y \in M$ we have

$$x = xx^{-1}x, (x^{-1})^{-1} = x, (xy)^{-1} = y^{-1}x^{-1}, xx^{-1}yy^{-1} = yy^{-1}xx^{-1}$$
 (†)

 $\operatorname{Inv}\langle A \mid u_i = v_i \ (i \in I) \rangle = \operatorname{Mon}\langle A \cup A^{-1} \mid u_i = v_i \ (i \in I) \cup (\dagger) \rangle$

where $u_i, v_i \in (A \cup A^{-1})^*$ and x, y range over all words from $(A \cup A^{-1})^*$. Free inverse monoid FIM $(A) = \text{Inv}\langle A \mid \rangle$



Munn (1974) Elements of FIM(A) can be represented using Munn trees. e.g. in FIM(a,b) we have u = w where

 $u = aa^{-1}bb^{-1}ba^{-1}abb^{-1}$ $w = bbb^{-1}a^{-1}ab^{-1}aa^{-1}b$

One-relator inverse monoids

A general construction

Theorem (RDG (2019))

Let $G = \text{Gp}\langle B | u_1 = 1, ..., u_n = 1 \rangle$ be a finitely presented group and let *N* be a finitely generated submonoid of *G*. Then there is a finitely presented inverse monoid

$$M_{G,N} = \operatorname{Inv} \langle B, t \mid v_1 = 1, \dots, v_n = 1 \rangle$$

with the same number of defining relations, such that

 $M_{G,N}$ has decidable word problem \iff The membership problem for N within G is decidable

One-relator inverse monoids

A general construction

Theorem (RDG (2019))

Let $G = \text{Gp}\langle B | u_1 = 1, ..., u_n = 1 \rangle$ be a finitely presented group and let *N* be a finitely generated submonoid of *G*. Then there is a finitely presented inverse monoid

$$M_{G,N} = \operatorname{Inv} \langle B, t \mid v_1 = 1, \dots, v_n = 1 \rangle$$

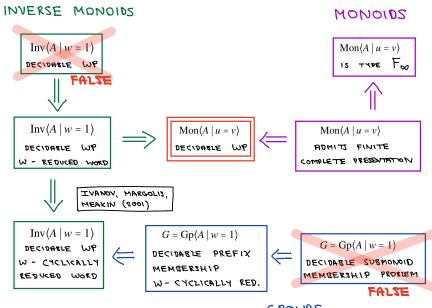
with the same number of defining relations, such that

 $M_{G,N}$ has decidable word problem \iff The membership problem for N within G is decidable

Theorem (RDG (2019))

There is a one-relator inverse monoid Inv(A | w = 1) with undecidable word problem.

Proof: Apply the general construction above with a pair (G, N) where G is a one-relator group and $N \le G$ is a finitely generated submonoid in which membership is undecidable. \Box



GROUPS

Finite complete presentations

$$M = \operatorname{Mon}\langle A \mid u_1 = v_1, \ u_2 = v_2, \ \dots, \ u_k = v_k \rangle$$

- $w \in A^*$ is irreducible if it contains no u_i .
- The presentation is complete if there is no infinite sequence

$$w_1 \rightarrow w_2 \rightarrow w_3 \rightarrow \ldots$$

with w_{i+1} obtained from w_i by applying a relation $u_r \rightarrow v_r$, and each element of the monoid *M* is represented by a unique irreducible word.

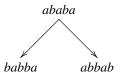
Example (Free commutative monoid) $Mon\langle a, b | ba = ab \rangle$, Normal forms (irreducibles) = $\{a^i b^j : i, j \ge 0\}$ Example (Bicyclic monoid) $Mon\langle b, c | bc = 1 \rangle$, Normal forms (irreducibles) = $\{c^i b^j : i, j \ge 0\}$

Important basic fact: If a monoid *M* admits a finite complete presentation, then *M* has decidable word problem.

Example of Kupar and Narendran (1985)

• $\mathcal{P}_1 = \operatorname{Mon}\langle a, b \mid aba = bab \rangle$

Is not a complete presentation since irreducibles not unique



However

• $\mathcal{P}_2 = \operatorname{Mon}\langle a, b, c \mid ab = c, ca = bc, bcb = cc, ccb = acc \rangle$

• \mathcal{P}_2 is a complete presentation and defines the same monoid as \mathcal{P}_1 .

Conclusion: The one-relator monoid Mon(a, b | aba = bab) admits a finite complete presentation.

One-relator monoids

Open problem

Does every one-relator monoid Mon $\langle A | u = v \rangle$ admit a finite complete presentation?

 Of course, a positive answer would solve the word problem for all one-relator monoids

Anick-Groves-Squier Theorem (Anick 1986)

If $M = Mon\langle A | R \rangle$ admits a finite complete presentation then M satisfies the topological finiteness property F_{∞} .

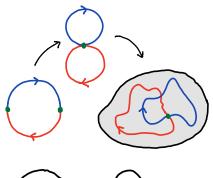
This motivates the following question of Kobayashi (2000)

Question: Is every one-relator monoid Mon $\langle A | u = v \rangle$ of type F_{∞} ?

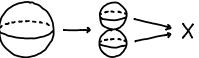
Groups and topology

X - a space (path connected)

Fundamental group $\pi_1(X) = \{ \text{ homotopy classes of loops } \}$



Higher homotopy groups $\pi_n(X) = \{ \text{homotopy classes of} \\ \text{maps } S^n \to X \}$ S^n the *n*-sphere



X is called aspherical if $\pi_n(X)$ is trivial for $n \neq 1$.

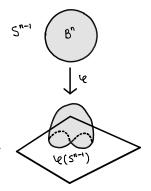
Theorem (Hurewicz (1936)) An aspherical space is determined up to homotopy equivalence by its fundamental group.

Classifying spaces of groups

CW complex - a space equipped with a sequence of subspaces

$$X_0 \subseteq X_1 \subseteq X_2 \subseteq \ldots$$

The *n*-skeleton X_n is obtained from X_{n-1} by attaching *n*-cells B^n via maps $\varphi : S^{n-1} \to X_{n-1}$.



Definition

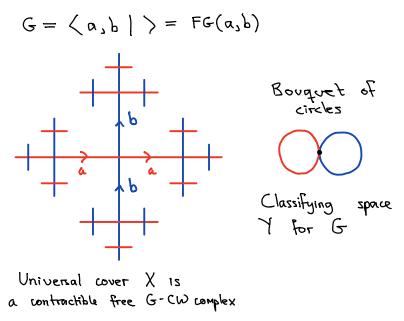
A classifying space Y for a group G is an aspherical CW complex with fundamental group G.

Classifying spaces exist and are unique up to homotopy equivalence.

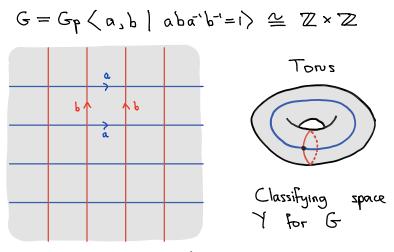
Whitehead theorem implies: a CW complex is aspherical \Leftrightarrow its universal cover is contractible.

If *Y* is a classifying space for *G* then the universal cover of *Y* is a free *G*-CW complex which is contractible.

Free group



Free abelian group



Universal cover $X = IR^2$ is a contractible free G-CW complex

Finiteness properties

Property F_n (C. T. C. Wall (1965))

- *G* is of type F_n if there is a classifying space with only finitely many *k*-cells for each $k \le n$.
- G is of type F_{∞} if there is a classifying space with finitely many cells in all dimensions.

Examples

- *G* is of type $F_1 \Leftrightarrow$ it is finitely generated.
- *G* is of type $F_2 \Leftrightarrow$ it is finitely presented.
- $\mathbb{Z} \times \mathbb{Z}$ is of type F_{∞} (finitely many cells in every dimension).

Finiteness properties of monoids

Definition (RG & Steinberg (2017))

An equivariant classifying space for a monoid *M* is a free *M*-CW complex which is contractible.

• Equivariant classifying spaces exist and are unique up to *M*-homotopy equivalence.

Property F_n

M is of type F_n if there is an equivariant classifying space *X* for *M* such that the set of *k*-cells is a finitely generated free *M*-set for all $k \le n$.

• For finitely presented monoids F_n is equivalent to the homological finiteness property FP_n .

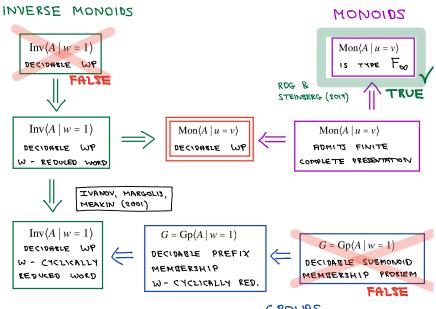
Bicyclic monord B=<b,c/bc=1> <u>ل</u>ه، ร Ъ² cb2 çP Cb: b b c b C2 23 26 263 c3b 23 2 233 c3 64 C+ 23 ረ ነ **دم/م ^** } ÷

Lyndon (1950): Constructed classifying spaces for arbitrary one-relator groups, which show that every one-relator group $Gp\langle A | w = 1 \rangle$ is of type F_{∞} .

Theorem (RG & Steinberg 2019)

Every one relator monoid Mon(A | u = v) is of type F_{∞} .

- We prove this result by constructing equivariant classifying spaces for arbitrary one-relator monoids.
- This answers positively the question of Kobayahi (2000).



GROUPS

More results for one-relator inverse monoids

Key question

For which words $w \in (A \cup A^{-1})^*$ does Inv(A | w = 1) have decidable word problem? In particular is the word problem always decidable when *w* is (a) reduced or (b) cyclically reduced?

Reduced vs cyclically reduced words

 $aba^{-1}ab$ - not reduced $abba^{-1}$ - reduced but not cyclically reduced $aba^{-1}b^{-1}$ - cyclically reduced

Definition

The prefix submonoid P_w of Gp(A | w = 1) is the submonoid generated by all prefixes of the word w.

Theorem (Ivanov, Margolis and Meakin (2001))

Let $w \in (A \cup A^{-1})^*$ be a cyclically reduced word. If $\operatorname{Gp}(A | w = 1)$ has decidable prefix membership problem (e.g. can decide membership in P_w) then $\operatorname{Inv}(A | w = 1)$ has decidable word problem.

Prefix membership problem via units

Theorem (Dolinka & RDG (2019))

Let $w \in (A \cup A^{-1})^*$ such that $\text{Inv}\langle A | w = 1 \rangle$ is *E*-unitary (e.g. true if *w* is cyclically reduced). Suppose that there is a finite set of words $U = \{u_1, \ldots, u_k\} \subseteq (A \cup A^{-1})^*$ such that

- each word in U represents an invertible element of $Inv\langle A | w = 1 \rangle$,
- *w* decomposes as $w \equiv w_1 w_2 \dots w_n$ where each $w_i \in U \cup U^{-1}$, and
- each u_i contains a letter that does not appear in any other u_j .

Then Gp $\langle A | w = 1 \rangle$ has decidable prefix membership problem, and Inv $\langle A | w = 1 \rangle$ has decidable word problem.

Prefix membership problem via units

Theorem (Dolinka & RDG (2019))

Let $w \in (A \cup A^{-1})^*$ such that Inv $\langle A | w = 1 \rangle$ is *E*-unitary (e.g. true if *w* is cyclically reduced). Suppose that there is a finite set of words $U = \{u_1, \ldots, u_k\} \subseteq (A \cup A^{-1})^*$ such that

- each word in U represents an invertible element of $Inv\langle A | w = 1 \rangle$,
- *w* decomposes as $w \equiv w_1 w_2 \dots w_n$ where each $w_i \in U \cup U^{-1}$, and
- each u_i contains a letter that does not appear in any other u_j .

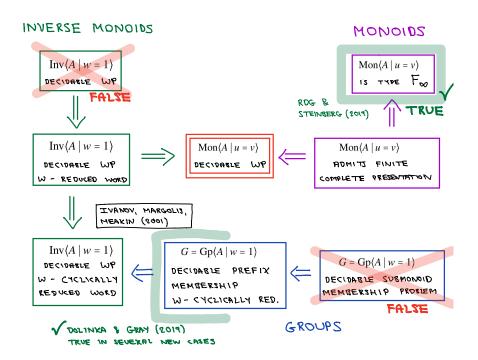
Then Gp $\langle A | w = 1 \rangle$ has decidable prefix membership problem, and Inv $\langle A | w = 1 \rangle$ has decidable word problem.

Example (Margolis, Meakin and Stephen (1987))

$$M = \operatorname{Inv}(a, b, c, d \mid (abcd)(acd)(ad)(abbcd)(acd) = 1)$$

= Inv(a, b, c, d \ (aba^{-1})(aca^{-1})(ad)(aca^{-1})(ad)(ad)
(aba^{-1})(aba^{-1})(aca^{-1})(ad)(aca^{-1})(ad) = 1).

where aba^{-1} , aca^{-1} and ad are all invertible in *M*. Hence *M* has decidable word problem.



INVERSE MONOIDS

MONOIDS

