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The word problem

Definition

A monoid M with a finite generating set A has decidable word problem if
there is an algorithm which for any two words wy, w, € A* decides whether
or not they represent the same element of M.

Example. M = Mon(a, b | ba = ab) has decidable word problem.
Normal forms = {a'b/ : i,j > 0}.

Some history

There are finitely presented monoids / groups with undecidable word
problem.

» Markov (1947) and Post (1947), Turing (1950), Novikov (1955) and
Boone (1958)

Longstanding open problem

Is the word problem decidable for one-relator monoids Mon(A | u = v)?



Word problem for one-relator groups and monoids

Groups ‘ Monoids ‘ Inverse monoids

GpA|w—1 Mon A|u—v) Inv(A|w=1)
FG(A)/{w) | A*[{(u,v)) | FIM(A)/{(w,1))

Theorem (Magnus (1932))

The word problem is decidable for one-relator groups.

One-relator monoids

» Word problem proved decidable in several cases by Adjan (1966),
Lallament (1974), Adjan & Oganesyan (1987).

One-relator inverse monoids

» Word problem proved decidable in several cases e.g. when w satisfies...
» Dyck word [Birget, Margolis, Meakin, 1993, 1994]
» w-strictly positive [Ivanov, Margolis, Meakin, 2001]
» Adjan or Baumslag-Solitar type [Margolis, Meakin, Sunik, 2005]
» Sparse word [Hermiller, Lindblad, Meakin, 2010]
» Certain small cancellation conditions [A. Juhdsz, 2012, 2014]
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Submonoid membership problem

G - afinitely generated group with a finite group generating set A.
m:(AUA™")* - G — the canonical monoid homomorphism.

T — a finitely generated submonoid of G.

The membership problem for 7 within G is decidable if there is an algorithm
which solves the following decision problem:

INPUT: A word 3 € (AUA~!)*.
QUESTION: 7(B) € T?



Submonoid membership problem

G - afinitely generated group with a finite group generating set A.
m:(AUA™")* - G — the canonical monoid homomorphism.

T — a finitely generated submonoid of G.

The membership problem for 7 within G is decidable if there is an algorithm
which solves the following decision problem:

INPUT: A word 3 € (AUA~!)*.
QUESTION: 7(B) € T?

There is also the uniform submonoid membership problem which takes
Byar,az,. .., 0, € (AUATY)* and asks 7(B) € Mon(m (), ..., m(am))?

» The submonoid membership problem is decidable in free groups
FG(A) = Gp(A | ) by Benois (1969).
» What about for one-relator groups Gp{A |w = 1)?



Right-angled Artin groups

Definition
The right-angled Artin group A(T") associated with the graph I is

Gp(VT' | uv = vu if and only if {u,v} € ET').

Example

D L.Ac

AM)=6p a,b,c,d, < | ac = <o, de=<d ,
ob = ba,be= b,
A =3% D



Right-angled Artin subgroups of one-relator groups

Theorem (RDG (2019))

A(T") embeds into some one-relator group <= I is a finite forest.

Lohrey & Steinberg (2008) proved that A(P4) contains a finitely generated
submonoid 7 in which membership is undecidable, where P, is the graph

a b c d
0—0—0—o0

Theorem (RDG (2019))

There is a one-relator group G = Gp(A | w = 1) with a fixed finitely generated
submonoid N < G such that the membership problem for N within G is
undecidable.

Example
Gpla,t|atat™'a 'ta 't! = 1) is a one-relator group with this property.



Proof
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» Since P is a tree there is a one-relator group G = Gp(A |w = 1) and an
embedding 6 : A(P4) = G.

» Then N = 6(T) is a finitely generated submonoid of G in which
membership is undecidable. [
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Inverse monoid presentations
An inverse monoid is a monoid M such that for every x € M there is a unique
x~! € M such that xx~'x = x and x Lxx~! = x7L.
For all x,y € M we have
x=xly (D) =x (o) =y ey T =y T ()
Inv(A |u; =v; (iel)) =Mon{AUA™" |u; =v; (ieI)u (¥))
where u;,v; € (AUA™')* and x, y range over all words from (A UA~!)*.

Free inverse monoid FIM(A) = Inv(A | )

©)
Munn (1974)
b Elements of FIM(A) can be
4 represented using Munn trees. e.g. in
o FIM(a, b) we have u = w where
b T R
u=aa" 'bb~ ba” abb

¢ S o w=bbb 'aab 'aa b



One-relator inverse monoids

A general construction

Theorem (RDG (2019))

Let G=Gp(B|u; =1,...,u, = 1) be a finitely presented group and let N be
a finitely generated submonoid of G. Then there is a finitely presented
inverse monoid

Mgy =Inv(B,t|vi=1,...,v,=1)

with the same number of defining relations, such that

M y has decidable word problem <= The membership problem for
N within G is decidable



One-relator inverse monoids

A general construction

Theorem (RDG (2019))

Let G=Gp(B|u; =1,...,u, = 1) be a finitely presented group and let N be
a finitely generated submonoid of G. Then there is a finitely presented
inverse monoid

Mgy =Inv(B,t|vi=1,...,v,=1)

with the same number of defining relations, such that

M y has decidable word problem <= The membership problem for

N within G is decidable
Theorem (RDG (2019))
There is a one-relator inverse monoid Inv(A | w = 1) with undecidable word
problem.

Proof: Apply the general construction above with a pair (G, N) where G is a
one-relator group and N < G is a finitely generated submonoid in which
membership is undecidable. [
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Finite complete presentations

M =Mon(A |u; = vy, up =vp, ... U =vg)

» w e A* is irreducible if it contains no u;.

» The presentation is complete if there is no infinite sequence
W1 => Wy > w3 —> ...

with w;,| obtained from w; by applying a relation u, — v,, and each
element of the monoid M is represented by a unique irreducible word.

Example (Free commutative monoid)

Mon(a, b | ba = ab), Normal forms (irreducibles) = {a't/ : i,j > 0}
Example (Bicyclic monoid)

Mon(b, c | bc = 1), Normal forms (irreducibles) = {c¢'b/ : i,j > 0}

Important basic fact: If a monoid M admits a finite complete presentation,
then M has decidable word problem.



Example of Kupar and Narendran (1985)

» Py = Mon(a, b| aba = bab)
Is not a complete presentation since irreducibles not unique

ababa

N\

babba abbab

However
» P, =Mon(a,b,c|ab = c,ca = be,bch = cc, ccb = acc)
» P, is a complete presentation and defines the same monoid as P;.

Conclusion: The one-relator monoid Mon(a, b | aba = bab) admits a finite
complete presentation.



One-relator monoids

Open problem

Does every one-relator monoid Mon(A | u = v) admit a finite complete
presentation?

» Of course, a positive answer would solve the word problem for all
one-relator monoids

Anick-Groves-Squier Theorem (Anick 1986)

If M = Mon(A | R) admits a finite complete presentation then M satisfies the
topological finiteness property Fo.

This motivates the following question of Kobayashi (2000)

Question: Is every one-relator monoid Mon(A | u = v) of type Foo?



Groups and topology

X - a space (path connected)

Fundamental group / \

71 (X) = { homotopy classes of

loops } Q

Higher homotopy groups

T (X) - { homotopy classes of ‘ (== —
maps §" > X } — N\ — X
S" the n-sphere ' 7

X is called aspherical if 7, (X) is trivial for n # 1.

Theorem (Hurewicz (1936)) An aspherical space is determined up to
homotopy equivalence by its fundamental group.



Classifying spaces of groups
Sn—l
CW complex - a space equipped with a

sequence of subspaces \L\e

XocX;SX¢...

The n-skeleton X,, is obtained from X,,_; by ‘

attaching n-cells B" via maps ¢ : S"! - X,_;.

Definition
A classifying space Y for a group G is an aspherical CW complex with

fundamental group G.

» Classifying spaces exist and are unique up to homotopy equivalence.

Whitehead theorem implies: a CW complex is aspherical <> its universal
cover is contractible.

If Y is a classifying space for G then the universal cover of Y is a

free G-CW complex which is contractible.



Free group

G= Lo, | >= Fe(a,b)

—|_ BougusX ok

(& v<\es
L b

“ I
b T

C,\ass'&bms sprr
— Yt &

T T

Univeral ctover X 1s
o tontmckible  Free G-Cw LeM?\ex



Free abelian group

G=Gp Lo,k | abal= & ZxZ
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Finiteness properties

Property F,, (C.T. C. Wall (1965))

» Gis of type F,, if there is a classifying space with only finitely many
k-cells for each k < n.

» Gis of type Fo, if there is a classifying space with finitely many cells in
all dimensions.

Examples

» Gis of type F| < it is finitely generated.
» G is of type F, < it is finitely presented.
» Z x Z is of type Fo, (finitely many cells in every dimension).



Finiteness properties of monoids

Definition (RG & Steinberg (2017))

An equivariant classifying space for a monoid M is a free M-CW complex
which is contractible.

» Equivariant classifying spaces exist and are unique up to M-homotopy
equivalence.

Property F,

M is of type F,, if there is an equivariant classifying space X for M such that
the set of k-cells is a finitely generated free M-set for all k < n.

» For finitely presented monoids F,, is equivalent to the homological
finiteness property FP,,.
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One-relator monoids

Lyndon (1950): Constructed classifying spaces for arbitrary one-relator
groups, which show that every one-relator group Gp(A |w = 1) is of type Fo..

Theorem (RG & Steinberg 2019)

Every one relator monoid Mon(A | u = v) is of type Fe.

» We prove this result by constructing equivariant classifying spaces for
arbitrary one-relator monoids.

» This answers positively the question of Kobayahi (2000).
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More results for one-relator inverse monoids

Key question

For which words w € (A UA~")* does Inv(A | w = 1) have decidable word
problem? In particular is the word problem always decidable when w is
(a) reduced or (b) cyclically reduced?

Reduced vs cyclically reduced words
aba~'ab - not reduced
abba™! - reduced but not cyclically reduced
aba™'b™' - cyclically reduced

Definition
The prefix submonoid P,, of Gp(A |w = 1) is the submonoid generated by all
prefixes of the word w.

Theorem (Ivanov, Margolis and Meakin (2001))

Let w € (AUA~)* be a cyclically reduced word. If Gp(A | w = 1) has
decidable prefix membership problem (e.g. can decide membership in P,,)
then Inv(A | w = 1) has decidable word problem.



Prefix membership problem via units

Theorem (Dolinka & RDG (2019))

Let w € (AUA~)* such that Inv(A | w = 1) is E-unitary (e.g. true if w is
cyclically reduced). Suppose that there is a finite set of words
U-={uy,...,ux} < (AuA~')* such that

» each word in U represents an invertible element of Inv{(A |w = 1),
» w decomposes as w = wiw, ... w, where each w; e UuU U!, and
» each u; contains a letter that does not appear in any other u;.

Then Gp(A | w = 1) has decidable prefix membership problem, and
Inv(A |w = 1) has decidable word problem.



Prefix membership problem via units

Theorem (Dolinka & RDG (2019))

Let w € (AUA~)* such that Inv(A | w = 1) is E-unitary (e.g. true if w is
cyclically reduced). Suppose that there is a finite set of words
U-={uy,...,ux} < (AuA~')* such that

» each word in U represents an invertible element of Inv{(A |w = 1),
» w decomposes as w = wiw, ... w, where each w; e UuU U!, and
» each u; contains a letter that does not appear in any other u;.

Then Gp(A | w = 1) has decidable prefix membership problem, and
Inv(A |w = 1) has decidable word problem.

Example (Margolis, Meakin and Stephen (1987))

M =1nv(a,b,c,d| (abcd)(acd)(ad)(abbed)(acd) = 1)
=Inv{a,b,c,d | (aba™")(aca™")(ad)(aca™")(ad)(ad)
(aba™")(aba ") (aca™")(ad)(aca™")(ad) = 1).

where aba™!, aca™! and ad are all invertible in M. Hence M has decidable
word problem.
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