One-relator groups, monoids and inverse semigroups

Robert D. Gray¹

ICSAA 2019, Cochin University of Science & Technology

¹Research supported by the EPSRC grant EP/N033353/1 "Special inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem".

The word problem

Definition

A monoid *M* with a finite generating set *A* has decidable word problem if there is an algorithm which for any two words $w_1, w_2 \in A^*$ decides whether or not they represent the same element of *M*.

Example. $M = \text{Mon}\langle a, b \mid ba = ab \rangle$ has decidable word problem. Normal forms = $\{a^i b^j : i, j \ge 0\}.$

Some history

There are finitely presented monoids / groups with undecidable word problem.

▸ Markov (1947) and Post (1947), Turing (1950), Novikov (1955) and Boone (1958)

Longstanding open problem

Is the word problem decidable for one-relator monoids $\text{Mon}\langle A | u = v \rangle$?

Word problem for one-relator groups and monoids

Theorem (Magnus (1932))

The word problem is decidable for one-relator groups.

One-relator monoids

▸ Word problem proved decidable in several cases by Adjan (1966), Lallament (1974), Adjan & Oganesyan (1987).

One-relator inverse monoids

- ▸ Word problem proved decidable in several cases e.g. when *w* satisfies...
	- ▸ Dyck word [Birget, Margolis, Meakin, 1993, 1994]
	- ▸ *w*-strictly positive [Ivanov, Margolis, Meakin, 2001]
	- ▸ Adjan or Baumslag-Solitar type [Margolis, Meakin, Šunik, 2005] ´
	- ▸ Sparse word [Hermiller, Lindblad, Meakin, 2010]
	- ▸ Certain small cancellation conditions [A. Juhász, 2012, 2014]

INVERSE MONOIDS

MONOIDS

GROUPS

Submonoid membership problem

G - a finitely generated group with a finite group generating set *A*. $\pi : (A \cup A^{-1})^* \to G$ – the canonical monoid homomorphism. *T* – a finitely generated submonoid of *G*.

The membership problem for *T* within *G* is decidable if there is an algorithm which solves the following decision problem:

INPUT: A word $\beta \in (A \cup A^{-1})^*$. QUESTION: $\pi(\beta) \in T?$

Submonoid membership problem

G - a finitely generated group with a finite group generating set *A*. $\pi : (A \cup A^{-1})^* \to G$ – the canonical monoid homomorphism. *T* – a finitely generated submonoid of *G*.

The membership problem for *T* within *G* is decidable if there is an algorithm which solves the following decision problem:

INPUT: A word $\beta \in (A \cup A^{-1})^*$. QUESTION: $\pi(\beta) \in T?$

There is also the uniform submonoid membership problem which takes $\beta, \alpha_1, \alpha_2, \ldots, \alpha_m \in (A \cup A^{-1})^*$ and asks $\pi(\beta) \in \text{Mon}\langle \pi(\alpha_1), \ldots, \pi(\alpha_m) \rangle$?

- ▸ The submonoid membership problem is decidable in free groups $FG(A) = Gp(A \mid)$ by Benois (1969).
- ▸ What about for one-relator groups Gp⟨*A* ∣ *w* = 1⟩?

Right-angled Artin groups

Definition

The right-angled Artin group $A(\Gamma)$ associated with the graph Γ is

 $Gp\langle V\Gamma | uv = vu$ if and only if $\{u, v\} \in E\Gamma \rangle$.

Example

Right-angled Artin subgroups of one-relator groups

Theorem (RDG (2019))

 $A(\Gamma)$ embeds into some one-relator group $\Longleftrightarrow \Gamma$ is a finite forest.

Lohrey & Steinberg (2008) proved that $A(P_4)$ contains a finitely generated submonoid *T* in which membership is undecidable, where P_4 is the graph

Theorem (RDG (2019))

There is a one-relator group $G = \text{Gp}(A \mid w = 1)$ with a fixed finitely generated submonoid $N \leq G$ such that the membership problem for *N* within *G* is undecidable.

Example

Gp $\langle a, t | \text{atat}^{-1} a^{-1} t a^{-1} t^{-1} = 1 \rangle$ is a one-relator group with this property.

Proof

- **►** Since P_4 is a tree there is a one-relator group $G = \text{Gp}(A \mid w = 1)$ and an embedding θ : $A(P_4) \rightarrow G$.
- Then $N = \theta(T)$ is a finitely generated submonoid of G in which membership is undecidable.

INVERSE MONOIDS

MONOIDS

GROUPS

Inverse monoid presentations

An inverse monoid is a monoid *M* such that for every $x \in M$ there is a unique $x^{-1} \in M$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$.

For all $x, y \in M$ we have

$$
x = xx^{-1}x, \ (x^{-1})^{-1} = x, \ (xy)^{-1} = y^{-1}x^{-1}, \ xx^{-1}yy^{-1} = yy^{-1}xx^{-1} \tag{\dagger}
$$

Inv $\langle A | u_i = v_i (i ∈ I) \rangle$ = Mon $\langle A ∪ A^{-1} | u_i = v_i (i ∈ I) ∪ (†) \rangle$

where $u_i, v_i \in (A \cup A^{-1})^*$ and x, y range over all words from $(A \cup A^{-1})^*$. Free inverse monoid $FIM(A) = Inv\langle A | \rangle$

Munn (1974) Elements of FIM(*A*) can be represented using Munn trees. e.g. in FIM (a, b) we have $u = w$ where

 $u = aa^{-1}bb^{-1}ba^{-1}abb^{-1}$ $w = bbb^{-1}a^{-1}ab^{-1}aa^{-1}b$

One-relator inverse monoids

A general construction

Theorem (RDG (2019))

Let $G = \text{Gp}(B \mid u_1 = 1, \ldots, u_n = 1)$ be a finitely presented group and let *N* be a finitely generated submonoid of *G*. Then there is a finitely presented inverse monoid

$$
M_{G,N} = \text{Inv}\langle B,t \mid v_1 = 1,\ldots,v_n = 1 \rangle
$$

with the same number of defining relations, such that

$$
M_{G,N}
$$
 has decidable word problem \iff The membership problem for
N within G is decidable

One-relator inverse monoids

A general construction

Theorem (RDG (2019))

Let $G = Gp(B | u_1 = 1, \ldots, u_n = 1)$ be a finitely presented group and let *N* be a finitely generated submonoid of *G*. Then there is a finitely presented inverse monoid

$$
M_{G,N} = \text{Inv}\langle B,t \mid v_1 = 1,\ldots,v_n = 1 \rangle
$$

with the same number of defining relations, such that

 $M_{G,N}$ has decidable word problem \iff The membership problem for *N* within *G* is decidable

Theorem (RDG (2019))

There is a one-relator inverse monoid $\text{Inv}(A \mid w = 1)$ with undecidable word problem.

Proof: Apply the general construction above with a pair (*G*,*N*) where *G* is a one-relator group and $N \leq G$ is a finitely generated submonoid in which membership is undecidable.

GROUPS

Finite complete presentations

$$
M = \text{Mon}\langle A \mid u_1 = v_1, u_2 = v_2, \ldots, u_k = v_k \rangle
$$

- **►** $w \in A^*$ is irreducible if it contains no u_i .
- \rightarrow The presentation is complete if there is no infinite sequence

$$
w_1 \to w_2 \to w_3 \to \ldots
$$

with w_{i+1} obtained from w_i by applying a relation $u_r \rightarrow v_r$, and each element of the monoid *M* is represented by a unique irreducible word.

Example (Free commutative monoid) Mon $\langle a, b \mid ba = ab \rangle$, Normal forms (irreducibles) = $\{a^i b^j : i, j \ge 0\}$

Example (Bicyclic monoid)

Mon $\langle b, c \mid bc = 1 \rangle$, Normal forms (irreducibles) = $\{c^i b^j : i, j \ge 0\}$

Important basic fact: If a monoid *M* admits a finite complete presentation, then *M* has decidable word problem.

Example of Kupar and Narendran (1985)

▸ P¹ = Mon⟨*a*, *b* ∣ *aba* = *bab*⟩

Is not a complete presentation since irreducibles not unique

However

▸ P² = Mon⟨*a*, *b*, *c* ∣ *ab* = *c*, *ca* = *bc*, *bcb* = *cc*, *ccb* = *acc*⟩

 \rightarrow \mathcal{P}_2 is a complete presentation and defines the same monoid as \mathcal{P}_1 .

Conclusion: The one-relator monoid $\text{Mon}\langle a, b \mid aba = bab \rangle$ admits a finite complete presentation.

One-relator monoids

Open problem

Does every one-relator monoid Mon $\langle A | u = v \rangle$ admit a finite complete presentation?

▸ Of course, a positive answer would solve the word problem for all one-relator monoids

Anick-Groves-Squier Theorem (Anick 1986)

If *M* = Mon⟨*A* ∣ *R*⟩ admits a finite complete presentation then *M* satisfies the topological finiteness property F_{∞} .

This motivates the following question of Kobayashi (2000)

Question: Is every one-relator monoid Mon $\langle A | u = v \rangle$ of type F_{∞} ?

Groups and topology

X - a space (path connected)

Fundamental group $\pi_1(X) = \{$ homotopy classes of loops }

Higher homotopy groups $\pi_n(X) = \{$ homotopy classes of $\{ \text{maps } S^n \to X \}$ $Sⁿ$ the *n*-sphere

X is called aspherical if $\pi_n(X)$ is trivial for $n \neq 1$.

Theorem (Hurewicz (1936)) An aspherical space is determined up to homotopy equivalence by its fundamental group.

Classifying spaces of groups

CW complex - a space equipped with a sequence of subspaces

$$
X_0 \subseteq X_1 \subseteq X_2 \subseteq \ldots
$$

The *n*-skeleton X_n is obtained from X_{n-1} by attaching *n*-cells B^n via maps $\varphi : S^{n-1} \to X_{n-1}$.

Definition

A classifying space *Y* for a group *G* is an aspherical CW complex with fundamental group *G*.

 \triangleright Classifying spaces exist and are unique up to homotopy equivalence.

Whitehead theorem implies: a CW complex is aspherical \Leftrightarrow its universal cover is contractible.

If *Y* is a classifying space for *G* then the universal cover of *Y* is a free *G*-CW complex which is contractible.

Free group

Free abelian group

Universal cover $X = \mathbb{R}^2$ is a contractible free G-CW complex

Finiteness properties

Property F*ⁿ* (C. T. C. Wall (1965))

- \rightarrow *G* is of type F_n if there is a classifying space with only finitely many *k*-cells for each $k \leq n$.
- \triangleright *G* is of type F_{∞} if there is a classifying space with finitely many cells in all dimensions.

Examples

- \triangleright *G* is of type F_1 ⇔ it is finitely generated.
- \cdot *G* is of type F_2 ⇔ it is finitely presented.
- \triangleright Z × Z is of type F_∞ (finitely many cells in every dimension).

Finiteness properties of monoids

Definition (RG & Steinberg (2017))

An equivariant classifying space for a monoid *M* is a free *M*-CW complex which is contractible.

 \rightarrow Equivariant classifying spaces exist and are unique up to *M*-homotopy equivalence.

Property F*ⁿ*

M is of type F*ⁿ* if there is an equivariant classifying space *X* for *M* such that the set of *k*-cells is a finitely generated free *M*-set for all $k \leq n$.

 \triangleright For finitely presented monoids F_n is equivalent to the homological finiteness property FP*n*.

Bicyclic monoid $B = \langle b, c | b c = 1 \rangle$ $b^{\frac{1}{2}}$ 5 \mathbf{r}_I b \mathbf{b} SP. ১৮ b \cup いい どピ 25 \mathcal{C} $\langle \cdot \rangle$ ($\sum_{i=1}^{n}$ \mathcal{C} $\mathcal{L}_{\mathcal{P}}$ \mathcal{L}^4 .•∖ ረገ ŵ

Lyndon (1950): Constructed classifying spaces for arbitrary one-relator groups, which show that every one-relator group $Gp(A | w = 1)$ is of type F_{∞} .

Theorem (RG & Steinberg 2019)

Every one relator monoid Mon $\langle A | u = v \rangle$ is of type F_{∞} .

- \rightarrow We prove this result by constructing equivariant classifying spaces for arbitrary one-relator monoids.
- ▸ This answers positively the question of Kobayahi (2000).

GROUPS

More results for one-relator inverse monoids

Key question

For which words $w \in (A \cup A^{-1})^*$ does $\text{Inv}(A \mid w = 1)$ have decidable word problem? In particular is the word problem always decidable when *w* is (a) reduced or (b) cyclically reduced?

Reduced vs cyclically reduced words

aba[−]¹ *ab* - not reduced *abba*[−]¹ - reduced but not cyclically reduced $aba^{-1}b^{-1}$ - cyclically reduced

Definition

The prefix submonoid P_w of $Gp(A | w = 1)$ is the submonoid generated by all prefixes of the word *w*.

Theorem (Ivanov, Margolis and Meakin (2001))

Let *w* ∈ $(A \cup A^{-1})^*$ be a cyclically reduced word. If Gp $\langle A | w = 1 \rangle$ has decidable prefix membership problem (e.g. can decide membership in *Pw*) then Inv $\langle A | w = 1 \rangle$ has decidable word problem.

Prefix membership problem via units

Theorem (Dolinka & RDG (2019))

Let $w \in (A \cup A^{-1})^*$ such that $\text{Inv}(A \mid w = 1)$ is *E*-unitary (e.g. true if *w* is cyclically reduced). Suppose that there is a finite set of words *U* = {*u*₁, ..., *u*_{*k*}} ⊆ (*A* ∪ *A*⁻¹)^{*} such that

- \rightarrow each word in *U* represents an invertible element of Inv $\langle A | w = 1 \rangle$,
- ► *w* decomposes as $w \equiv w_1w_2 \ldots w_n$ where each $w_i \in U \cup U^{-1}$, and
- each u_i contains a letter that does not appear in any other u_j .

Then $Gp(A \mid w = 1)$ has decidable prefix membership problem, and Inv $\langle A \mid w = 1 \rangle$ has decidable word problem.

Prefix membership problem via units

Theorem (Dolinka & RDG (2019))

Let $w \in (A \cup A^{-1})^*$ such that $\text{Inv}(A \mid w = 1)$ is *E*-unitary (e.g. true if *w* is cyclically reduced). Suppose that there is a finite set of words *U* = {*u*₁, ..., *u*_{*k*}} ⊆ (*A* ∪ *A*⁻¹)^{*} such that

- \rightarrow each word in *U* represents an invertible element of Inv $\langle A | w = 1 \rangle$,
- ► *w* decomposes as $w \equiv w_1w_2 \ldots w_n$ where each $w_i \in U \cup U^{-1}$, and
- each u_i contains a letter that does not appear in any other u_j .

Then $Gp(A \mid w = 1)$ has decidable prefix membership problem, and Inv $\langle A \mid w = 1 \rangle$ has decidable word problem.

Example (Margolis, Meakin and Stephen (1987))

$$
M = \text{Inv}\langle a, b, c, d \mid (abcd)(acd)(ad)(abbcd)(acd) = 1\rangle
$$

=
$$
\text{Inv}\langle a, b, c, d \mid (aba^{-1})(aca^{-1})(ad)(aca^{-1})(ad)(ad)
$$

$$
(aba^{-1})(aba^{-1})(aca^{-1})(ad)(aca^{-1})(ad) = 1\rangle.
$$

where aba^{-1} , aca^{-1} and ad are all invertible in *M*. Hence *M* has decidable word problem.

INVERSE MONOIDS

MONOIDS

