Undecidability of the word problem for one-relator inverse monoids

Robert D. Gray¹

SandGAL 2019, Cremona, Italy, June 2019

¹Research supported by the EPSRC grant EP/N033353/1 "Special inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem".

Theorem (Scheiblich (1973) & Munn (1974)) Free inverse monoids have decidable word problem.

Conjecture (Margolis, Meakin, Stephen (1987)) If $M = \text{Inv}(A \mid w = 1)$, then the word problem for *M* is decidable.

Theorem (Scheiblich (1973) & Munn (1974))

Free inverse monoids have decidable word problem.

Conjecture (Margolis, Meakin, Stephen (1987))

If $M = Inv\langle A | w = 1 \rangle$, then the word problem for M is decidable.

Theorem (Ivanov, Margolis, Meakin (2001))

If the word problem is decidable for all inverse monoids of the form Inv $\langle A \mid w = 1 \rangle$ then the word problem is also decidable for every one-relator monoid Mon $\langle A | u = v \rangle$.

Theorem (Scheiblich (1973) & Munn (1974))

Free inverse monoids have decidable word problem.

Conjecture (Margolis, Meakin, Stephen (1987))

If $M = \text{Inv}(A \mid w = 1)$, then the word problem for *M* is decidable.

Proved true in many cases e.g. when *w* satisfies...

- ▸ Idempotent word [Birget, Margolis, Meakin, 1993, 1994]
- ▸ *w*-strictly positive [Ivanov, Margolis, Meakin, 2001]
- ▸ Adjan or Baumslag-Solitar type [Margolis, Meakin, Šunik, 2005] ´
- ▸ Sparse word [Hermiller, Lindblad, Meakin, 2010]
- ▸ Certain small cancellation conditions [A. Juhász, 2012, 2014]

Theorem (RDG (2019))

There is a one-relator inverse monoid Inv $\langle A | w = 1 \rangle$ with undecidable word problem.

Theorem (RDG (2019))

There is a one-relator inverse monoid $\text{Inv}(A \mid w = 1)$ with undecidable word problem.

Ingredients for the proof:

- ▸ Submonoid membership problem for one relator groups.
- ▸ HNN-extensions and free products of groups.
- ▸ Right-angled Artin groups (RAAGs).
- ▸ Right units of special inverse monoids

$$
Inv\langle A | w_1 = 1, w_2 = 1, ..., w_k = 1 \rangle
$$

and Stephen's procedure for constructing Schützenberger graphs.

▸ Properties of *E*-unitary inverse monoids.

Inverse monoid presentations

An inverse monoid is a monoid *M* such that for every $x \in M$ there is a unique $x^{-1} \in M$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$.

For all $x, y \in M$ we have

$$
x = xx^{-1}x, \ (x^{-1})^{-1} = x, \ (xy)^{-1} = y^{-1}x^{-1}, \ xx^{-1}yy^{-1} = yy^{-1}xx^{-1} \tag{\dagger}
$$

Inv $\langle A | u_i = v_i (i \in I) \rangle$ = Mon $\langle A \cup A^{-1} | u_i = v_i (i \in I) \cup (\dagger) \rangle$

where $u_i, v_i \in (A \cup A^{-1})^*$ and x, y range over all words from $(A \cup A^{-1})^*$. Free inverse monoid $FIM(A) = Inv\langle A | \rangle$

Munn (1974) Elements of FIM(*A*) can be represented using Munn trees. e.g. in FIM (a, b) we have $u = w$ where

u = *aa*[−]¹ *bb*[−]¹ *ba*[−]¹ *abb*[−]¹ $w = bbb^{-1}a^{-1}ab^{-1}aa^{-1}b$

The word problem

M - a finitely generated monoid with a finite generating set *A*. $\pi : A^* \to M$ – the canonical monoid homomorphism.

The monoid *M* has decidable word problem if there is an algorithm which solves the following decision problem:

INPUT: Two words $u, v \in A^*$.

QUESTION: $\pi(u) = \pi(v)$? i.e. do *u* and *v* represent the same element of the monoid *M*?

For a group or an inverse monoid with generating set *A* the word problem is defined in the same way except the input is two words $u, v \in (A \cup A^{-1})^*$.

Example. The bicyclic monoid Inv $\langle a \, | \, aa^{-1} = 1 \rangle$ has decidable word problem.

Proof strategy

$$
M = \text{Inv}(A|r = 1) \longrightarrow G = G_{P}(A|r = 1)
$$
\n
$$
U_{R} = \{ m \in M : mm^{-1} = 1 \}
$$
\n
$$
\frac{\pi}{\pi}
$$
\n
$$
\frac{1}{\pi}
$$
\n
$$
\frac{1}{\
$$

RAAGs induced subgraphs and subgroups

Definition

The right-angled Artin group $A(\Gamma)$ associated with the graph Γ is

 $Gp\langle V\Gamma | uv = vu$ if and only if $\{u, v\} \in E\Gamma \rangle$.

Fact: If Δ is an induced subgraph of Γ then the embedding $\Delta \rightarrow \Gamma$ induces an embedding $A(\Delta) \rightarrow A(\Gamma)$.

Example

HNN-extensions of groups

 $H \cong \text{Gp}(A \mid R)$, $K, L \leq H$ with $K \cong L$. Let $\phi : K \to L$ be an isomorphism. The HNN-extension of *H* with respect to ϕ is

$$
G = \text{HNN}(H, \phi) = \text{Gp}\langle A, t | R, t^{-1}kt = \phi(k) \ (k \in K) \rangle
$$

Fact: *H* embeds naturally into the HNN extension $G = HNN(H, \phi)$.

HNN-extensions of RAAGs

Definition

 $Γ$ - finite graph, $ψ$: $Δ₁ → Δ₂$ an isomorphism between finite induced subgraphs.

 $A(\Gamma, \psi)$ is defined to be the HNN-extension of $A(\Gamma)$ with respect to the isomorphism $A(\Delta_1) \rightarrow A(\Delta_2)$ induced by ψ .

Fact: $A(\Gamma)$ embeds naturally into $A(\Gamma, \psi)$.

Let P_4 be the graph

 $A(P_4) = Gp(a, b, c, d | ab = ba, bc = cb, cd = dc).$

 Δ_1 - subgraph induced by $\{a, b, c\}$, Δ_2 subgraph induced by $\{b, c, d\}$, $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b$, $b \mapsto c$, and $c \mapsto d$.

Let P_4 be the graph

 $A(P_4) = Gp(a, b, c, d | ab = ba, bc = cb, cd = dc).$

 Δ_1 - subgraph induced by $\{a, b, c\}, \Delta_2$ subgraph induced by $\{b, c, d\},$ $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b$, $b \mapsto c$, and $c \mapsto d$. Then the HNN-extension $A(P_4, \psi)$ of $A(P_4)$ with respect to ψ is

$$
A(P_4, \psi)
$$

= Gp(a, b, c, d, t | ab = ba, bc = cb, cd = dc, tat⁻¹ = b, tbt⁻¹ = c, tct⁻¹ = d)

Let P_4 be the graph

 $A(P_4) = Gp(a, b, c, d | ab = ba, bc = cb, cd = dc).$

 Δ_1 - subgraph induced by $\{a, b, c\}, \Delta_2$ subgraph induced by $\{b, c, d\},$ $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b$, $b \mapsto c$, and $c \mapsto d$. Then the HNN-extension $A(P_4, \psi)$ of $A(P_4)$ with respect to ψ is

$$
A(P_4, \psi)
$$

= Gp(a, b, c, d, t | ab = ba, bc = cb, cd = dc, tat⁻¹ = b, tbt⁻¹ = c, tct⁻¹ = d)
= Gp(a, t | a(tat⁻¹) = (tat⁻¹)a, (tat⁻¹)(t²at⁻²) = (t²at⁻²)(tat⁻¹),
(t²at⁻²)(t³at⁻³) = (t³at⁻³)(t²at⁻²)).

Let P_4 be the graph

 $A(P_4) = Gp(a, b, c, d | ab = ba, bc = cb, cd = dc).$

 Δ_1 - subgraph induced by $\{a, b, c\}, \Delta_2$ subgraph induced by $\{b, c, d\},$ $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b$, $b \mapsto c$, and $c \mapsto d$. Then the HNN-extension $A(P_4, \psi)$ of $A(P_4)$ with respect to ψ is

$$
A(P_4, \psi)
$$

= Gp(a, b, c, d, t | ab = ba, bc = cb, cd = dc, tat⁻¹ = b, tbt⁻¹ = c, tct⁻¹ = d)
= Gp(a, t | a(tat⁻¹) = (tat⁻¹)a, (tat⁻¹)(t²at⁻²) = (t²at⁻²)(tat⁻¹),
(t²at⁻²)(t³at⁻³) = (t³at⁻³)(t²at⁻²)).
= Gp(a, t | atat⁻¹a⁻¹ta⁻¹t⁻¹ = 1).

Let P_4 be the graph

 $A(P_4) = Gp(a, b, c, d | ab = ba, bc = cb, cd = dc).$

 Δ_1 - subgraph induced by $\{a, b, c\}$, Δ_2 subgraph induced by $\{b, c, d\}$, $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b$, $b \mapsto c$, and $c \mapsto d$. Then the HNN-extension $A(P_4, \psi)$ of $A(P_4)$ with respect to ψ is

$$
A(P_4, \psi)
$$

= Gp $\langle a, b, c, d, t | ab = ba, bc = cb, cd = dc, tat^{-1} = b, tbt^{-1} = c, tct^{-1} = d \rangle$
= Gp $\langle a, t | a(tat^{-1}) = (tat^{-1})a, (tat^{-1})(t^2at^{-2}) = (t^2at^{-2})(tat^{-1}),$
 $(t^2at^{-2})(t^3at^{-3}) = (t^3at^{-3})(t^2at^{-2})\rangle.$
= Gp $\langle a, t | atat^{-1}a^{-1}ta^{-1}t^{-1} = 1 \rangle.$

Conclusion

A(*P*4) embeds into the one-relator group

$$
A(P_4, \psi) = \text{Gp}\langle a, t | \text{atat}^{-1}a^{-1}ta^{-1}t^{-1} = 1 \rangle.
$$

Submonoid membership problem

G - a finitely generated group with a finite group generating set *A*. π : $(A \cup A^{-1})^* \rightarrow G$ – the canonical monoid homomorphism. *T* – a finitely generated submonoid of *G*.

The membership problem for *T* within *G* is decidable if there is an algorithm which solves the following decision problem:

INPUT: A word $w \in (A \cup A^{-1})^*$. $OUESTION: \pi(w) \in T?$

Theorem B

Let *G* be the one-relator group $Gp\langle a, t | \text{atat}^{-1}a^{-1}ta^{-1}t^{-1} = 1\rangle$. Then there is a fixed finitely generated submonoid *N* of *G* such that the membership problem for *N* within *G* is undecidable.

Proof of Theorem B

Theorem B

Let *G* be the one-relator group $Gp\langle a, t | \text{atat}^{-1}a^{-1}ta^{-1}t^{-1} = 1\rangle$. Then there is a fixed finitely generated submonoid *N* of *G* such that the membership problem for *N* within *G* is undecidable.

Proof. By [Lohrey & Steinberg, 2008] there is a finitely generated submonoid *T* of $A(P_4)$ such that the membership problem for *T* within $A(P_4)$ is undecidable. Let θ : $A(P_4) \rightarrow G$ be an embedding. Then $N = \theta(T)$ is a finitely generated submonoid of *G* such that the membership problem for *N* within *G* is undecidable.

Proof strategy

$$
M = \text{Inv}(A|r = 1) \longrightarrow G = G_{P}(A|r = 1)
$$
\n
$$
U_{R} = \{ m \in M : mm^{-1} = 1 \}
$$
\n
$$
\frac{\pi}{\pi}
$$
\n
$$
\frac{1}{\pi}
$$
\n
$$
\frac{1}{\
$$

General observations about inverse monoids

S – an inverse monoid generated by *A*, *E*(*S*) – set of idempotents,

 $U_R \leq S$ – right units = submonoid if right invertible elements.

- ▸ If *e* ∈ *E*(*S*) and *e* ∈ *U^R* then *e* = 1.
- \rightarrow Two relations for the price of one: If *e* is an idempotent in FIM(*A*) and $r \in (A \cup A^{-1})^*$ then

$$
Inv\langle A | er = 1 \rangle = Inv\langle A | e = 1, r = 1 \rangle.
$$

• $e \in (A \cup A^{-1})^*$ is an idempotent in FIM(A) if and only if *e* freely reduces to 1 in the free group FG(*A*). e.g.

 $x^{-1}y^{-1}xx^{-1}yzz^{-1}x \in E(\text{FIM}(x, y, z)).$

A general construction

For any
$$
r, w_1, ..., w_k \in (A \cup A^{-1})^*
$$
, with $A = \{a_1, ..., a_n\}$, set *e* equal to
\n $a_1 a_1^{-1} ... a_n a_n^{-1} (tw_1 t^{-1}) (tw_1^{-1} t^{-1}) (tw_2 t^{-1}) (tw_2^{-1} t^{-1}) ... (tw_k t^{-1}) (tw_k^{-1} t^{-1}) a_n^{-1} a_n ... a_1^{-1} a_1$

where *t* is a new symbol. Then

$$
M = \text{Inv}\langle A, t | er = 1 \rangle
$$

= $\text{Inv}\langle A, t | r = 1, aa^{-1} = 1, a^{-1}a = 1 (a \in A), (tw_i t^{-1})(tw_i t^{-1})^{-1} = 1 (1 \le i \le k) \rangle$

$$
\approx \text{Gp}\langle A | r = 1 \rangle * \text{FIM}(t) / \{(tw_i t^{-1})(tw_i t^{-1})^{-1} = 1 (1 \le i \le k) \}.
$$

Key claim

Let *T* be the submonoid of $G = \text{Gp}(A \mid r = 1)$ generated by $\{w_1, w_2, \ldots, w_k\}$. Then for all $u \in (A \cup A^{-1})^*$ we have

 $u \in T$ in $G \Longleftrightarrow \text{tut}^{-1} \in U_R$ in M .

A general construction

For any
$$
r, w_1, ..., w_k \in (A \cup A^{-1})^*
$$
, with $A = \{a_1, ..., a_n\}$, set *e* equal to
\n $a_1 a_1^{-1} ... a_n a_n^{-1} (tw_1 t^{-1}) (tw_1^{-1} t^{-1}) (tw_2 t^{-1}) (tw_2^{-1} t^{-1}) ... (tw_k t^{-1}) (tw_k^{-1} t^{-1}) a_n^{-1} a_n ... a_1^{-1} a_1$

where *t* is a new symbol. Then

$$
M = \text{Inv}\langle A, t | er = 1 \rangle
$$

= $\text{Inv}\langle A, t | r = 1, aa^{-1} = 1, a^{-1}a = 1 (a \in A), (tw_i t^{-1})(tw_i t^{-1})^{-1} = 1 (1 \le i \le k) \rangle$

$$
\approx \text{Gp}\langle A | r = 1 \rangle \times \text{FIM}(t) / \{ (tw_i t^{-1})(tw_i t^{-1})^{-1} = 1 (1 \le i \le k) \}.
$$

Key claim

Let *T* be the submonoid of $G = \text{Gp}(A \mid r = 1)$ generated by $\{w_1, w_2, \ldots, w_k\}$. Then for all $u \in (A \cup A^{-1})^*$ we have

$$
u \in T \text{ in } G \Longleftrightarrow tut^{-1} \in U_R \text{ in } M.
$$

Theorem

If $M = Inv(A, t | er = 1)$ has decidable word problem then the membership problem for *T* within $G = \text{Gp}(A \mid r = 1)$ is decidable.

Proof strategy refined

$$
M = \text{Inv }\langle A, t | e r = 1 \rangle
$$
\n
$$
= G_{P} \langle A, t | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{P} \langle A | r = 1 \rangle
$$
\n
$$
= G_{
$$

$$
\Rightarrow \text{membership problem for } U_R \leq M \text{ is decidable} \\ \Rightarrow \forall u \in (A \cup A^{-1})^* \text{ can decide } \boxed{\text{t} u t^{-1} \in U_R ?} \\ \Rightarrow \text{by key claim} \text{ can decide } \boxed{u \in T = M_{on} \langle w_{1}, ..., w_{k} \rangle \leq G}
$$

Tying things together

Thoerem A

There is a one-relator inverse monoid Inv $\langle A | w = 1 \rangle$ with undecidable word problem.

Proof.

Let $A = \{a, z\}$ and let *G* be the one-relator group

$$
{\rm Gp}\langle a,z\,|\,a z a z^{-1} a^{-1} z a^{-1} z^{-1}=1\rangle.
$$

Let $W = \{w_1, \ldots, w_k\}$ be a finite subset of $(A \cup A^{-1})^*$ such that the membership problem for $T = \text{Mon}(W)$ within *G* is undecidable. Such a set *W* exists by Theorem B. Set *e* to be the idempotent word

$$
aa^{-1}zz^{-1}(tw_1t^{-1})(tw_1^{-1}t^{-1})(tw_2t^{-1})(tw_2^{-1}t^{-1})\ldots (tw_kt^{-1})(tw_k^{-1}t^{-1})z^{-1}za^{-1}a.
$$

Then by the above theorem the one-relator inverse monoid

$$
\text{Inv}\langle a, z, t | eazaz^{-1}a^{-1}za^{-1}z^{-1} = 1 \rangle
$$

has undecidable word problem. This completes the proof.

Related work

Other negative results

Adjan (1966): Proved the group of units of Mon $\langle A | w = 1 \rangle$ is a one-relator group.

Makanin (1966): Proved that the monoid Mon $\langle A | w_1 = 1, \ldots, w_k = 1 \rangle$ has a finitely presented group of units (with *k* defining relations), and that *M* has decidable word problem if and only if its group of units also does.

In recent joint work with Nik Ruškuc we have shown:

- ▸ There is a one-relator inverse monoid Inv⟨*A* ∣ *w* = 1⟩ whose group of units is *not a one-relator group*.
- **►** There is a finitely presented inverse monoid $Inv(A | w_1 = 1, ..., w_k = 1)$ whose group of units is *not finitely presented*.

Some positive results

In recent joint work with Igor Dolinka we have shown the word problem is decidable for some new classes of $Inv\langle A | w = 1 \rangle$ where *w* is a cyclically reduced and the maximal group image $Gp(A | w = 1)$ is "low down" in the Magnus–Moldovanskii hierarchy.

Open problems

Problem

For which words $w \in (A \cup A^{-1})^*$ does $Inv(A \mid w = 1)$ have decidable word problem? In particular is the word problem always decidable when *w* is (a) reduced or (b) cyclically reduced?

Open problems

Problem

For which words $w \in (A \cup A^{-1})^*$ does $Inv(A \mid w = 1)$ have decidable word problem? In particular is the word problem always decidable when *w* is (a) reduced or (b) cyclically reduced?

Problem

Characterise the one-relator groups with decidable submonoid membership problem.

Problem

Characterise the one-relator groups with decidable rational subset membership problem.

Problem

Is the subgroup membership problem decidable for one-relator groups?