
Finite Gröbner–Shirshov bases for Plactic algebras
and biautomatic structures for Plactic monoids

Robert Gray
(joint work with A. J. Cain and A. Malheiro)

Linz, Austria, Spring 2014



A tableau

Properties

I Rows read left-to-right are non-decreasing.
I Columns read down are strictly decreasing.
I Never have a longer row above a strictly shorter one.
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Tableaux
Let n ∈ N, and let A be the finite ordered alphabet

A = {1 < 2 < · · · < n}.
Definitions

Row a non-decreasing word w ∈ A∗ (e.g. 111224556)
Domination The row α = α1 · · ·αk dominates the row β = β1 · · ·βl,

denoted α . β, if k ≤ l and αi > βi for all i ≤ k.
i.e.

α1 α2 α3 α4
∨ ∨ ∨ ∨
β1 β2 β3 β4 β5 β6.

Tableau Any word w ∈ A∗ has a decomposition as a product of rows
of maximal length w = α(1) · · ·α(k).
Then w is a tableau if α(i) . α(i+1) for all i.

I We write tableaux in a planar form with rows placed in order of
domination and left-justified.
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Tableaux - in pictures

Example
Let A = {1 < 2 < 3 < 4 < 5}, and consider α = 325114 ∈ A∗

α = 325114 = 3 25 114 = α(1)α(2)α(3)

I Columns read down are strictly decreasing.
I Never have a longer row above a strictly shorter one.
I Conclusion: α is a tableau.

Notes:
I Symbols in tableaux are allowed to repeat.
I Rows can be arbitrarily long while columns have height bounded by n.
I There are infinitely many tableaux over A = {1 < · · · < n}.



Tableaux - in pictures

Example

v = 325224 = 3 25 224
is not a tableau

First column not strictly decreasing.

Example

u = 22311 = 223 11
is not a tableau

Has the wrong shape, a long row
above a shorter one.



Schensted’s algorithm - Easier done than said
I Associates to each word w ∈ A∗ a tableau t = P(w).
I The algorithm which produces P(w) is recursive.
I P(w) is obtained by permuting the symbols of w in a certain way.

Input: A tableau w with rows α(1), . . . , α(k) and a symbol γ ∈ A.

Output: The tableau P(wγ).

Method:
1. If α(k)γ is a row, the result is α(1) · · ·α(k)γ.
2. If α(k)γ is not a row, then suppose α(k) = α1 · · ·αl (where αi ∈ A) and

let j be minimal such that αj > γ. Then the results is:

P(α(1) · · ·α(k−1)αj)α
′(k),

where α′(k) = α1 · · ·αj−1γαj+1 · · ·αl.

Bumping
In case 2, the algorithm replaces αj by γ in the lowest row and recursively
right-multiplies by αj the tableau formed by all rows except the lowest.
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Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)



Schensted’s algorithm example

n = 5, α = 132541, compute P(w)

Conclusion
P(α) = P(132541) = 3 25 114 = 325114, which is a tableau.

Fact
If w ∈ A∗ is already a tableau then P(w) = w in A∗.
e.g. P(325114) = 325114.



The Plactic monoid
A = {1 < 2 < · · · < n}
Define an equivalence relation ∼ on A∗ by

u ∼ v⇔ P(u) = P(v) in A∗.

Theorem (Knuth (1970))
The equivalence relation ∼ is a congruence on the free monoid A∗.
The quotient Mn = A∗/ ∼ is called the Plactic monoid of rank n.

So, the Plactic monoid Mn is the monoid of tableaux:
Elements The set of all tableaux over A = {1 < 2 < · · · < n}.

Multiplication Given tableaux u and v, their product is u · v = P(uv).

Example



A finite presentation for the Plactic monoid Mn

I For words u, v of length ≤ 2 we have u ∼ v⇔ u ≡ w.
I The Knuth relations = { all relations u ∼ v for words of length 3 }.
I In fact, these relations alone are enough to define the monoid.

Theorem (Knuth (1970))
Let n ∈ N. Let A be the finite ordered alphabet {1 < 2 < . . . < n}.
Let R be the set of defining relations:

zxy = xzy x ≤ y < z,

yzx = yxz x < y ≤ z.

Then the Plactic monoid Mn is finitely presented by 〈A|R〉.



The Plactic monoid

I Has origins in work of Schensted (1961) and Knuth (1970) concerned
with combinatorial problems on Young tableaux.

I Later studied in depth by Lascoux and Shützenberger (1981).

Due to close relations to Young tableaux, has become a tool in several
aspects of representation theory and algebraic combinatorics.

Applications of the Plactic monoid
I proof of the Littlewood–Richardson rule for Schur functions (an

important result in the theory of symmetric functions);
I see appendix of J. A. Green’s “Polynomial representations of GLn”.

I a combinatorial description of the Kostka–Foulkes polynomials, which
arise as entries of the character table of the finite linear groups.

M. P. Schützenberger ‘Pour le monoïde plaxique’ (1997)
Argues that the Plactic monoid ought to be considered as “one of the most
fundamental monoids in algebra”.



Complete rewriting systems

X - alphabet, R ⊆ X∗ × X∗ - rewrite rules, 〈X | R〉 - rewriting system
Write r = (r+1, r−1) ∈ R as r+1 → r−1.

Define a binary relation→
R

on X∗ by

u→
R

v ⇔ u ≡ w1r+1w2 and v ≡ w1r−1w2

for some (r+1, r−1) ∈ R and w1,w2 ∈ X∗.

−→∗ R is the transitive and reflexive closure of→
R

Noetherian: No infinite descending
chain

w1→R
w2→R

· · ·→
R

wn→R
· · ·

Confluent: Whenever

u−→∗ R v and u−→∗ R v′

there is a word w ∈ X∗:

v−→∗ R w and v′−→∗ R w

Definition: R is complete if it is both noetherian & confluent.



Complete rewriting systems

X - alphabet, R ⊆ X∗ × X∗ - rewrite rules

Let M = X∗/↔∗ R be the monoid defined by 〈X | R〉 where↔∗ R is the
congruence generated by R.

A word u is irreducible if no reduction u→
R

v can be applied.

I If R is a noetherian rewriting system, each congruence class of
M = X∗/↔∗ R contains at least one irreducible element.

Proposition
Assuming R is noetherian, then R is a complete rewriting system⇔ each
congruence class of M = X∗/↔∗ R contains exactly one irreducible word.

I 〈X | R〉 is a finite complete rewriting system if it is complete
(noetherian and confluent) and |X| <∞ and |R| <∞.



Finite complete rewriting systems for the Plactic monoid

Kubat and Okniński (2010) showed...
I Let A = {1 < 2 < 3}. The eight Knuth relations

zxy→ xzy (x ≤ y < z), yzx→ yxz (x < y ≤ z) x, y, z ∈ A,

taken together with the following rewrite rules:

3212→ 2321, 32131→ 31321, 32321→ 32132,

gives a finite complete rewriting system defining M3.

I Their results show that for higher ranks the same approach does not
yield a finite complete rewriting system i.e. for n ≥ 4, starting with:

zxy→ xzy (x ≤ y < z), yzx→ yxz (x < y ≤ z) x, y, z ∈ A,

then there is no finite set of rules u→ v (with v <lex u) holding in Mn,
that can be added to obtain a complete rewriting system defining Mn.
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This leaves the question...

Question
Does the Plactic monoid Mn admit a presentation by a finite complete
rewriting system (with respect to some finite generating set)?



Change of viewpoint

A = {1 < 2 < · · · < n}
Column a strictly decreasing word in A∗ (e.g. 98532)

Note: There are only finitely many columns (since height bounded by n).

Column readings
Denote by C(w) (with w a tableau) the word obtained by reading that tableau
column-wise from left to right and top to bottom.
Exercise: C(w) = w in Mn for any tableau w.

Example
We have the tableau
w = 3 25 114 = 325114, with
C(w) = 321 51 4 = 321514,
and

325114 = 321514 in M5.



Working with columns
Thus, the set of column readings of the tableaux gives an alternative set of
normal forms in A∗ for the elements of Mn.

Define a new alphabet representing the set of all columns:

C = {cα : α ∈ A∗ is a column}.

Column readings give a canonical way of expressing each element (tableau)
of Mn uniquely as a product of the generators C.

The idea
Seek a complete rewriting system for the Plactic monoid with respect to C.

Compatible columns: Define a relation � on columns as follows: if
α = αk · · ·α1 and β = βl · · ·β1 are columns,

α � β ⇔ k ≥ l and αi ≤ βi for all i ≤ l.

Thus α � β if and only if the column α can appear immediately to the left of
β in the planar representation of a tableau.
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Multiplying pairs of columns

Compatible columns: Product
P(uw) where u � w.

Does not give rise to a relation
between words over C∗.

Incompatible columns: Symbols
in w all strictly less than those in
u.

Then P(uw) has a single column.



Multiplying pairs of columns

Incompatible columns: Left
column shorter than right.

Incompatible columns: A strict
increase in one of the rows.

Note: In both of these examples (1) the product again has two columns w
and x, and (2) the left column w of the product is strictly taller than the left
column u of the original pair u, v of columns.



Multiplying pairs of columns

This is true in general:

Key Lemma
Suppose α and β are columns with α 6� β. Then P(αβ) contains at most two
columns. Furthermore, if P(αβ) contains exactly two columns, the left
column contains more symbols than α.

This result is proved by applying the following classical result:

Theorem (Schensted (1961))
Let u ∈ A∗. The number of columns in P(u) is equal to the length of the
longest non-decreasing subsequence in u. The number of rows in P(u) is
equal to the length of the longest decreasing subsequence in u.



Finite complete rewriting system for Plactic monoids

C = {cα : α ∈ A∗ is a column}

Define a finite set of rewriting rules T on C∗ as follows:

T =
{

cαcβ → cγ : α 6� β ∧ P(αβ) consists of one column γ
}

∪
{

cαcβ → cγcδ : α 6� β ∧
P(αβ) consists of two columns, left col. γ and right col. δ

}
Lemma
The Plactic monoid Mn is finitely presented by 〈C | T 〉.

We claim that 〈C | T 〉 is a finite complete rewriting system.



(C, T ) is noetherian

@ – ordering on C such that cα @ cβ whenever |α| > |β|;
� – the length-plus-lexicographic order on C∗ induced by @
(which is a well-ordering of C∗);
Applying the key lemma: If w→T w′ then w′ � w.



(C, T ) is confluent

I Let w ∈ C∗ be arbitrary.
I Noetherian⇒ applying T to w will eventually yield some irreducible

w′ ≡ c1c2 . . . ck ∈ C∗.

I w′ irreducible⇒ ci � ci+1 for all i.
I Thus the columns c1, c2, . . . , ck form a tableau which is precisely the

element of the Plactic monoid Mn represented by the word w ∈ C∗.
I Thus w′ is uniquely determined by w i.e. each w ∈ C∗ reduces to a

unique irreducible word under→T .



Finite complete rewriting system for Plactic monoids

Theorem (Cain, RG, Malheiro (2012))
(C, T ) is a finite complete rewriting system for the Plactic monoid Mn.

Note
Chen and Li (2011) exhibit an infinite complete rewriting systems for
Plactic monoids over the (infinite) set of rows of tableaux.



Plactic algebras

K - a field, K[Mn] - the Plactic algebra of rank n over K

Various aspects of Plactic algebras have been considered:
I Cedó, Okniński (2004): structure of Plactic algebras of ranks 2 and 3

(investigated properties: semiprimitive, semiprime, and prime);
I Kubat, Okniński (2012): Plactic algebra of rank 3 studied (including

description of minimal prime ideals);
I Kubat, Okniński (2010): Gröbner-Shirshov bases.

Are important special cases in general study of algebras defined by
homogeneous semigroup relations, including

I Chinese algebras;
I algebras defined by permutation relations;
I algebras related to the quantum Yang–Baxter equation.

See work of Cedó, Jaszuńska, Jespers, Kubat, Okniński, and others...



Gröbner–Shirshov bases

The theories of Gröbner and Gröbner–Shirshov bases were invented
independently by

I A. I. Shirshov (1962) for non-commutative and non-associative algebras
I H. Hironaka (1964) & B. Buchberger (1965) for commutative algebras.

Interest: presentations of algebras i.e. expressing an algebra as a free
algebra factored by an ideal.

Gröbner bases are ‘nice’ generating sets of ideals in the free commutative
algebra K[x1, . . . , xn] that help:

I solve polynomial systems of equations by triangularization; solve linear
equations (ideal membership); describe quotient algebras effectively.

Non-commutative Gröbner–Shirshov bases
I Analogous working in (non-commutative) free algebra K〈x1, . . . , xn〉.



Complete rewriting systems and Gröbner–Shirshov bases

K - field, 〈A,R〉 - finite rewriting system defining a monoid M
K[M] - corresponding semigroup algebra

Let F = {l− r : (l→ r) ∈ R} ⊂ K[A∗].

Proposition. The semigroup algebra K[M] is isomorphic to the factor
algebra K[A∗]/〈F〉, where 〈F〉 is the ideal generated by F.

Proposition. If 〈A,R〉 is a finite complete rewriting system then

F = {l− r : (l→ r) ∈ R} ⊂ K[A∗]

is a finite Gröbner–Shirshov basis for K[M] ∼= K[A∗]/〈F〉.

Heyworth (1999) – gives a ‘dictionary’ linking these two worlds:

complete rewrite system ↔ Gröbner–Shirshov basis
Knuth–Bendix completion algorithm ↔ Buchberger algorithm



Gröbner–Shirshov bases for Plactic algebras

The results on finite complete rewriting systems proved by Kubat and
Okniński were actually expressed these terms:

Theorem (Kubat and Okniński (2010))
Let K[Mn] be the Plactic algebra of rank n over a field K.

1. If n = 3 then K[Mn] has a finite Gröbner–Shirshov basis.
2. If n > 3 then every Gröbner–Shirshov basis of K[Mn] (associated to the

degree-lexicographic ordering on A) is infinite.

Our result may also be expressed in these terms:

Theorem (Cain, RG, Malheiro (2012))
A Plactic algebra of arbitrary finite rank over an arbitrary field admits a finite
Gröbner–Shirshov basis over C with respect to degree-lexicographic order.



Automatic structures

Automatic groups and monoids
I Automatic groups

I Capture a large class of groups with easily solvable word problem
I Examples: finite groups, free groups, free abelian groups, various small

cancellation groups, Artin groups of finite and large type, Braid groups,
hyperbolic groups.

I Automatic semigroups and monoids
I Classes of monoids that have been shown to be automatic include

divisibility monoids and singular Artin monoids of finite type.

Defining property: existence of rational set of normal forms (with respect
to some finite generating set A) such that ∀a ∈ A, there is a finite automaton
recognising pairs of normal forms that differ by multiplication by a.

Proposition (Campbell et al. (2001))
Automatic monoids have word problem solvable in quadratic time.



Plactic monoids and automaticity

1. Plactic monoids have word problem solvable in quadratic time
I a consequence of the Schensted insertion algorithm

2. Automatic monoids have word problem solvable in quadratic time

These two facts led Efim Zelmanov during the conference

Groups and Semigroups: Interactions and Computations (Lisbon, July 2011)

to ask the following natural question:

“Are Plactic monoids automatic?”



Plactic monoids are biautomatic

A = {1 < 2 < · · · < n}, Mn - Plactic monoid of rank n

L = the set of all column readings of tableaux.

L ⊆ A∗ is a regular language over A that maps onto Mn.

Theorem (Cain, RG, Malheiro (2012))
(A,L) is a biautomatic structure for the Plactic monoid Mn.

I Biautomatic = the strongest form of automaticity for monoids.
I Beginning with the finite complete rewriting system obtained above, we

show how for Plactic monoids finite transducers may be constructed to
perform left (respectively right) multiplication by a generator.

Corollary (Cain, RG, Malheiro (2012))
Let B be a finite generating set for the Plactic monoid Mn. Then Mn admits a
biautomatic structure over B.



Related results and future work

I The Chinese monoid Cn
I A = {1 < 2 < . . . < n}, defining relations{

(zyx, zxy), (zxy, yzx) : x ≤ y ≤ z
}
.

I Using Chinese staircase representation of Cassaige et al. (2001) we prove

Theorem (Cain, RG, Malheiro (2013)) Chinese monoids are biautomatic.

I Monoids defined by multihomogeneous presentations
I Q: Are all monoids with multihomogenous presentations biautomatic /

presentable by finite complete rewriting systems?
I A: No. We have examples of multihomogeneous presentations that:

I (1) are not automatic; (2) do not admit a presentation by a finite complete
rewriting system / do not have finite Gröbner–Shirshov bases.

I What can be said for other interesting examples of this kind?
I The shifted Plactic monoid (Serrano (2009))
I The hypoplactic monoid (Novelli (1998))
I Given by permutation relations (F. Cedó, E. Jespers, J. Okniński (2010))
I Plactic-growth-like monoids (Duchamp & Krob (1994))



Appendix



Biautomaticity - formal definiton

Let A be an alphabet and let $ be a new symbol not in A. Define the mapping
δR : A∗ × A∗ → ((A ∪ {$})× (A ∪ {$}))∗ by

(u1 · · · um, v1 · · · vn) 7→


(u1, v1) · · · (um, vn) if m = n,
(u1, v1) · · · (un, vn)(un+1, $) · · · (um, $) if m > n,
(u1, v1) · · · (um, vm)($, vm+1) · · · ($, vn) if m < n,

and the mapping δL : A∗ × A∗ → ((A ∪ {$})× (A ∪ {$}))∗ by

(u1 · · · um, v1 · · · vn) 7→


(u1, v1) · · · (um, vn) if m = n,
(u1, $) · · · (um−n, $)(um−n+1, v1) · · · (um, vn) if m > n,
($, v1) · · · ($, vn−m)(u1, vn−m+1) · · · (um, vn) if m < n,

where ui, vi ∈ A.



Biautomaticity - formal definiton

Let M be a monoid. Let A be a finite alphabet representing a set of generators
for M and let L ⊆ A∗ be a regular language such that every element of M has
at least one representative in L. For each a ∈ A ∪ {ε}, define the relations

La = {(u, v) : u, v ∈ L, ua =M v}
aL = {(u, v) : u, v ∈ L, au =M v}.

The pair (A,L) is a biautomatic structure for M if LaδR, aLδR, LaδL, and
aLδL are regular languages over (A ∪ {$})× (A ∪ {$}) for all a ∈ A ∪ {ε}.

A monoid M is biautomatic if it admits a biautomatic structure with respect
to some generating set.
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