Locally finite graphs with more than one end

R. Gray

University of Leeds

23rd May, 2007

Robert Gray (University of Leeds)

Locally finite graphs

Outline

Introduction

Graphs, ends and automorphisms

The theory of structure trees

- Tree sets and D-cuts
- Structure trees, the structure mapping, and ends

3 Transitivity conditions: some applications

- k-arc-transitive graphs
- k-CS-transitive graphs

Graphs

Definition

- A graph Γ is a pair (VΓ, EΓ)
 - VΓ vertex set
 - EΓ set of 2-element subsets of VΓ, the edge set.
- If $\{u, v\} \in E\Gamma$ we say that u and v are adjacent writing $u \sim v$.
- The neighbourhood of u is $\Gamma(u) = \{v \in V\Gamma : v \sim u\}.$
- The degree of u is $|\Gamma(u)|$.
- A graph Γ is locally finite if all of its vertices have finite degree.

Rays and ends

Definition

A ray in a graph Γ is a sequence $\{v_i\}_{i\in\mathbb{N}}$ of *distinct* vertices such that $v_i \sim v_{i+1}$ for all $i \in \mathbb{N}$.

The ends of a graph Γ are equivalence classes of rays.

Definition

The rays *R* and *S* are said to belong to the same end of the graph Γ if there is a third ray *T* such that $|R \cap T| = |S \cap T| = \aleph_0$.

Rays and ends

Definition

A ray in a graph Γ is a sequence $\{v_i\}_{i\in\mathbb{N}}$ of *distinct* vertices such that $v_i \sim v_{i+1}$ for all $i \in \mathbb{N}$.

The ends of a graph Γ are equivalence classes of rays.

Definition

The rays *R* and *S* are said to belong to the same end of the graph Γ if there is a third ray *T* such that $|R \cap T| = |S \cap T| = \aleph_0$.

Example: 3-regular tree

Example: a 2-ended graph

Example. $\mathbb{Z}_2 \times \mathbb{Z}$ with two equivalent rays

 $R = (x_0, x_1, x_2, ...)$ and $S = (y_0, y_1, y_2, ...)$ belong to the same end since with $T = (x_0, x_1, y_1, y_2, x_2, x_3, y_3, y_4, x_4, x_5, y_5, ...)$ we have

 $|R \cap T| = |S \cap T| = \aleph_0$

Example: a 2-ended graph

Example. $\mathbb{Z}_2 \times \mathbb{Z}$ with two equivalent rays

 $R = (x_0, x_1, x_2, ...)$ and $S = (y_0, y_1, y_2, ...)$ belong to the same end since with $T = (x_0, x_1, y_1, y_2, x_2, x_3, y_3, y_4, x_4, x_5, y_5, ...)$ we have

 $|R \cap T| = |S \cap T| = \aleph_0$

Rays and ends

- The ends describe how the graph branches.
- Each end corresponds to a "way of going to infinity".
- If F ⊆ Γ is finite and R is a ray then there is exactly one connected component C of Γ \ F such that |R ∩ C| = ℵ₀.
- Two rays *R* and *S* are not in the same end of Γ if and only if there is a finite set *F* of vertices and distinct components *C* and *D* of $\Gamma \setminus F$ such that $|R \cap C| = |S \cap D| = \aleph_0$.
- The number of ends is the least upper bound (possibly ∞) of the number of infinite connected components that can be obtained by removing finitely many vertices.

Examples: A grid, a tree and a line

Automorphisms

Fact

By König's infinity lemma any connected infinite locally finite graph has at least one ray and therefore at least one end.

Definition

- $G = \operatorname{Aut} \Gamma$ the full automorphism group of Γ
- Γ is vertex transitive if G acts transitively on VΓ.

Theorem (Diestel, Jung, Möller (1993))

A connected vertex transitive graph has either 1, 2 or 2^{\aleph_0} ends.

Some other transitivity conditions

Distance - d(u, v) := minimum length of a path from u to v ($u, v \in V\Gamma$)

Definition

- Γ is k-distance-transitive if for each i with 0 ≤ i ≤ k, Aut Γ acts transitively on the set {(u, v) ∈ VΓ × VΓ : d(u, v) = i}.
- An *s*-arc is a sequence v_0, \ldots, v_s of vertices such that v_i is adjacent to v_{i+1} for all $0 \le i \le s 1$, and $v_j \ne v_{j+2}$ for $0 \le j \le s 2$.
- A graph is s-arc transitive if its automorphism group acts transitively on s-arcs.

Fact

Locally finite graphs with more than one end are very sensitive to transitivity conditions such as these.

Robert Gray (University of Leeds)

Locally finite graphs

10/25

Results

Let Γ be a locally finite connected graph with more than one end.

Theorem (Möller (92))

If Γ is 2-distance transitive then Γ is k-distance transitive for all $k \in \mathbb{N}$.

Theorem (Thomassen–Woess (93))

If Γ is 2-arc transitive then Γ is a regular tree.

Theorem (Thomassen–Woess (93))

If Γ is 1-arc transitive and all vertices have degree r, where r is a prime, then Γ is a regular tree.

All these results can be proved using of the theory of structure trees.

Boundaries and tight cuts

Let
$$e \subseteq V\Gamma$$
 and let $e^* := V\Gamma \setminus e$.

Definition

Boundary ∂e (red vertices): { $v \in e^* : \exists u \in e, u \sim v$ }

Co-boundary δe (blue edges): { $a \in E\Gamma$: $e \cap a \neq \emptyset \& e^* \cap a \neq \emptyset$ }

 $e \subseteq V\Gamma$ is a cut if $|\partial e| < \aleph_0$

A cut *e* is tight if both *e* and its complement *e*^{*} are connected

Undirected tree sets

Definition

 $E \subseteq \{A \subseteq V\Gamma : |\delta A| < \aleph_0\}$ is an undirected tree set if \emptyset , $V\Gamma \notin E$ and: (no crossing cuts) for all $e, f \in E$ one of the following holds

$$e \subseteq f$$
, $e \subseteq f^*$, $e^* \subseteq f$, or $e^* \subseteq f^*$

(finite intervals) $\forall e, f \in E$ there are only finitely many $g \in E : e \subset g \subset f$;

(complement closed) If $e \in E$ then $e^* \in E$, for all $e \in E$.

For all $e, f \in E$ one of the following holds

$$\boldsymbol{e} \subseteq \boldsymbol{f}, \qquad \boldsymbol{e} \subseteq \boldsymbol{f}^*, \qquad \boldsymbol{e}^* \subseteq \boldsymbol{f}, \quad \text{or} \quad \boldsymbol{e}^* \subseteq \boldsymbol{f}^*$$

Robert Gray (University of Leeds)

For all $e, f \in E$ one of the following holds

$$\boldsymbol{e} \subseteq \boldsymbol{f}, \qquad \boldsymbol{e} \subseteq \boldsymbol{f}^*, \qquad \boldsymbol{e}^* \subseteq \boldsymbol{f}, \quad \text{or} \quad \boldsymbol{e}^* \subseteq \boldsymbol{f}^*$$

Robert Gray (University of Leeds)

For all $e, f \in E$ one of the following holds

$$\boldsymbol{e} \subseteq \boldsymbol{f}, \qquad \boldsymbol{e} \subseteq \boldsymbol{f}^*, \qquad \boldsymbol{e}^* \subseteq \boldsymbol{f}, \quad \text{or} \quad \boldsymbol{e}^* \subseteq \boldsymbol{f}^*$$

This is allowed. These cuts do not "cross".

Robert Gray (University of Leeds)

For all $e, f \in E$ one of the following holds

$$\boldsymbol{e} \subseteq \boldsymbol{f}, \qquad \boldsymbol{e} \subseteq \boldsymbol{f}^*, \qquad \boldsymbol{e}^* \subseteq \boldsymbol{f}, \quad \text{or} \quad \boldsymbol{e}^* \subseteq \boldsymbol{f}^*$$

For all $e, f \in E$ one of the following holds

$$\boldsymbol{e} \subseteq \boldsymbol{f}, \qquad \boldsymbol{e} \subseteq \boldsymbol{f}^*, \qquad \boldsymbol{e}^* \subseteq \boldsymbol{f}, \quad \text{or} \quad \boldsymbol{e}^* \subseteq \boldsymbol{f}^*$$

This is not allowed. These cuts "cross".

Cutting up graphs

Definition

Let $G = \text{Aut } \Gamma$. If *e* is an infinite tight cut, with infinite complement, such that $E = Ge \cup Ge^*$ is a tree set, then we say that *e* is a D-cut.

Theorem (Dunwoody (1982))

Any infinite connected graph with more than one end has a D-cut.

If *e* is a D-cut then $E = Ge \cup Ge^*$ is a tight undirected *G*-invariant tree set.

Example. A D-cut *e* in the graph $\Gamma = \mathbb{Z}$

- We use a tight undirected *G*-invariant tree set *E* to construct a tree
- T(E) has directed edges that come in pairs with edges in one-one correspondence with the sets in the tree set E
- e = (u, v) in T(E) ⇒ (v, u) in T(E) and is labelled by the complement e^{*} of e
- Y := the disjoint union of pairs of edges $\{e, e^*\}$ for $e \in E$

Identify various vertices

$$f \ll e$$
 if $f \subset e \& \neg [\exists g \in E : f \subset g \subset e]$

Equivalence relation \approx on *VY* $e = (u, v), f = (x, y) \in Y$ write $v \approx x$ if x = v or if $f \ll e$

Pairs of edges are never identified

Define $T = T(E) := Y / \approx$.

Identify various vertices

 $f \ll e \text{ if } f \subset e \And \neg [\exists g \in E : f \subset g \subset e]$

Equivalence relation \approx on *VY* $e = (u, v), f = (x, y) \in Y$ write $v \approx x$ if x = v or if $f \ll e$

Pairs of edges are never identified

Define $T = T(E) := Y / \approx$.

Identify various vertices

$$f \ll e ext{ if } f \subset e \& \neg [\exists g \in E : f \subset g \subset e]$$

Equivalence relation \approx on *VY* $e = (u, v), f = (x, y) \in Y$ write $v \approx x$ if x = v or if $f \ll e$

Pairs of edges are never identified

Define $T = T(E) := Y / \approx$.

• *T* is connected and has no cycles of length greater than 2.

• If $e = e_0, e_1, \ldots, e_n = f$ is a directed edge path in T then in Γ we have $e_0 \supseteq e_1 \supseteq \ldots \supseteq e_n$.

17/25

Example: An infinite comb and a tree set

- *E* consists of the "teeth" of the comb and their complements
- The edges radiating out from the centre of T(E) correspond to the "teeth" of the comb.

Robert Gray (University of Leeds)

Locally finite graphs

Example: An infinite comb and a different tree set

The structure mapping

Definition ($\phi: V\Gamma \rightarrow T(E)$)

For $v \in V\Gamma$ let $e(v) \subseteq E$ be the set of members of *E* to which *v* belongs.

Let $T(v) \subseteq T(E)$ be the subgraph of T induced by the directed edges e(v).

For each edge pair f = (x, y), $f^* = (y, x)$ either $f \in e(v)$ or $f^* \in e(v)$.

Fact. There is a unique vertex w in T(v) whose out degree is zero. Every edge in T(v) "points towards" the vertex w.

Define $\phi(\mathbf{v}) := \mathbf{w}$.

Example: Structure map 1

- *u* belongs to its tooth and to the complements of all other teeth.
- *v* belongs to the complement of every tooth.

Robert Gray (University of Leeds)

Locally finite graphs

21/25

Example: Structure map 2

Properties of $\phi: V\Gamma \to T(E)$

Proposition

The mapping ϕ has the following properties:

- If $u, v \in \Gamma$, and $e \in E$ with $u \in e$ and $v \in e^*$, then it follows that $\phi(u) \neq \phi(v)$.
- If φ(u) = φ(v) then we cannot distinguish between u and v just using the tree set E.
- $G = \operatorname{Aut} \Gamma$ acts on the tree T(E).
- The action of *G* commutes with the map ϕ .

Theorem (Thomassen–Woess (93))

Let Γ be a connected locally finite 1-arc transitive graph all of whose vertices have degree r, where r is a prime. If Γ has more than one end then Γ is a regular tree.

- By Dunwoody's theorem Γ has a *D*-cut $e_0 \subseteq V\Gamma$
- Set $E := Ge_0 \cup Ge_0^*$, T = T(E), and fix $v \in V\Gamma$

Theorem (Thomassen–Woess (93))

Let Γ be a connected locally finite 1-arc transitive graph all of whose vertices have degree r, where r is a prime. If Γ has more than one end then Γ is a regular tree.

- By Dunwoody's theorem Γ has a *D*-cut $e_0 \subseteq V\Gamma$
- Set $E := Ge_0 \cup Ge_0^*$, T = T(E), and fix $v \in V\Gamma$
- Define an equivalence relation σ on Γ(ν) by
 (x, y) ∈ σ ⇔ φ(x) and φ(y) belong to the same connected
 component of T \ φ(ν).

Theorem (Thomassen–Woess (93))

Let Γ be a connected locally finite 1-arc transitive graph all of whose vertices have degree r, where r is a prime. If Γ has more than one end then Γ is a regular tree.

- By Dunwoody's theorem Γ has a *D*-cut $e_0 \subseteq V\Gamma$
- Set $E := Ge_0 \cup Ge_0^*$, T = T(E), and fix $v \in V\Gamma$
- Define an equivalence relation σ on Γ(ν) by
 (x, y) ∈ σ ⇔ φ(x) and φ(y) belong to the same connected
 component of T \ φ(ν).
- Claim 1. $\Gamma(v)$ has more than one σ -class.

Theorem (Thomassen–Woess (93))

Let Γ be a connected locally finite 1-arc transitive graph all of whose vertices have degree r, where r is a prime. If Γ has more than one end then Γ is a regular tree.

- By Dunwoody's theorem Γ has a *D*-cut $e_0 \subseteq V\Gamma$
- Set $E := Ge_0 \cup Ge_0^*$, T = T(E), and fix $v \in V\Gamma$
- Define an equivalence relation σ on Γ(ν) by
 (x, y) ∈ σ ⇔ φ(x) and φ(y) belong to the same connected
 component of T \ φ(ν).
- Claim 1. $\Gamma(v)$ has more than one σ -class.
- Claim 2. Any two σ -classes have the same size.

Theorem (Thomassen–Woess (93))

Let Γ be a connected locally finite 1-arc transitive graph all of whose vertices have degree r, where r is a prime. If Γ has more than one end then Γ is a regular tree.

- By Dunwoody's theorem Γ has a *D*-cut $e_0 \subseteq V\Gamma$
- Set $E := Ge_0 \cup Ge_0^*$, T = T(E), and fix $v \in V\Gamma$
- Define an equivalence relation σ on Γ(ν) by
 (x, y) ∈ σ ⇔ φ(x) and φ(y) belong to the same connected
 component of T \ φ(ν).
- Claim 1. $\Gamma(v)$ has more than one σ -class.
- Claim 2. Any two σ -classes have the same size.
- **Corollary.** $|\Gamma(v)|$ is prime \Rightarrow the σ -classes are all trivial.

Theorem (Thomassen–Woess (93))

Let Γ be a connected locally finite 1-arc transitive graph all of whose vertices have degree r, where r is a prime. If Γ has more than one end then Γ is a regular tree.

Theorem (Thomassen–Woess (93))

Let Γ be a connected locally finite 1-arc transitive graph all of whose vertices have degree r, where r is a prime. If Γ has more than one end then Γ is a regular tree.

•
$$\Gamma$$
 1-arc-transitive \Rightarrow
 $\exists c \in \mathbb{N} \setminus \{0\} : \{x, y\} \in E\Gamma \Rightarrow d_T(\phi(x), \phi(y)) = c$

Theorem (Thomassen–Woess (93))

Let Γ be a connected locally finite 1-arc transitive graph all of whose vertices have degree r, where r is a prime. If Γ has more than one end then Γ is a regular tree.

- Γ 1-arc-transitive \Rightarrow $\exists c \in \mathbb{N} \setminus \{0\} : \{x, y\} \in E\Gamma \Rightarrow d_T(\phi(x), \phi(y)) = c$
- Claim 3. I does not have any cycles

Theorem (Thomassen–Woess (93))

Let Γ be a connected locally finite 1-arc transitive graph all of whose vertices have degree r, where r is a prime. If Γ has more than one end then Γ is a regular tree.

- Γ 1-arc-transitive \Rightarrow $\exists c \in \mathbb{N} \setminus \{0\} : \{x, y\} \in E\Gamma \Rightarrow d_T(\phi(x), \phi(y)) = c$
- Claim 3. I does not have any cycles
- $v_0, v_1, v_2, \dots, v_n$ a path in Γ with no repeated vertices

Theorem (Thomassen–Woess (93))

Let Γ be a connected locally finite 1-arc transitive graph all of whose vertices have degree r, where r is a prime. If Γ has more than one end then Γ is a regular tree.

- Γ 1-arc-transitive \Rightarrow $\exists c \in \mathbb{N} \setminus \{0\} : \{x, y\} \in E\Gamma \Rightarrow d_T(\phi(x), \phi(y)) = c$
- Claim 3. I does not have any cycles
- $v_0, v_1, v_2, \ldots, v_n$ a path in Γ with no repeated vertices
- Corollary $\Rightarrow \phi(v_0), \phi(v_2)$ are in different components of $T \setminus \phi(v_1)$.

Theorem (Thomassen–Woess (93))

Let Γ be a connected locally finite 1-arc transitive graph all of whose vertices have degree r, where r is a prime. If Γ has more than one end then Γ is a regular tree.

- Γ 1-arc-transitive \Rightarrow $\exists c \in \mathbb{N} \setminus \{0\} : \{x, y\} \in E\Gamma \Rightarrow d_T(\phi(x), \phi(y)) = c$
- Claim 3. Γ does not have any cycles
- $v_0, v_1, v_2, \ldots, v_n$ a path in Γ with no repeated vertices
- Corollary $\Rightarrow \phi(v_0), \phi(v_2)$ are in different components of $T \setminus \phi(v_1)$.
- $d_T(\phi(v_0), \phi(v_2)) = d_T(\phi(v_0), \phi(v_1)) + d_T(\phi(v_1), \phi(v_2)) = 2c$

Theorem (Thomassen–Woess (93))

Let Γ be a connected locally finite 1-arc transitive graph all of whose vertices have degree r, where r is a prime. If Γ has more than one end then Γ is a regular tree.

- Γ 1-arc-transitive \Rightarrow $\exists c \in \mathbb{N} \setminus \{0\} : \{x, y\} \in E\Gamma \Rightarrow d_T(\phi(x), \phi(y)) = c$
- Claim 3. Γ does not have any cycles
- $v_0, v_1, v_2, \ldots, v_n$ a path in Γ with no repeated vertices
- Corollary $\Rightarrow \phi(v_0), \phi(v_2)$ are in different components of $T \setminus \phi(v_1)$.
- $d_T(\phi(v_0), \phi(v_2)) = d_T(\phi(v_0), \phi(v_1)) + d_T(\phi(v_1), \phi(v_2)) = 2c$
- By induction, for all k, $d_T(\phi(v_0), \phi(v_k)) = kc$

Theorem (Thomassen–Woess (93))

Let Γ be a connected locally finite 1-arc transitive graph all of whose vertices have degree r, where r is a prime. If Γ has more than one end then Γ is a regular tree.

Proof outline

- Γ 1-arc-transitive \Rightarrow $\exists c \in \mathbb{N} \setminus \{0\} : \{x, y\} \in E\Gamma \Rightarrow d_T(\phi(x), \phi(y)) = c$
- Claim 3. Γ does not have any cycles
- $v_0, v_1, v_2, \ldots, v_n$ a path in Γ with no repeated vertices
- Corollary $\Rightarrow \phi(v_0), \phi(v_2)$ are in different components of $T \setminus \phi(v_1)$.
- $d_T(\phi(v_0), \phi(v_2)) = d_T(\phi(v_0), \phi(v_1)) + d_T(\phi(v_1), \phi(v_2)) = 2c$
- By induction, for all k, $d_T(\phi(v_0), \phi(v_k)) = kc$

•
$$\therefore k > 1 \rightarrow v_0 \not\sim v_k.$$

24/25

Summary

My own work, cycle-free partial orders

• The other theorems above can be proved using structure trees.

Definition

A graph Γ is *k*-CS-transitive if for any finite isomorphic connected substructures *A* and *B*, of size *k*, there is an automorphism $\alpha \in \operatorname{Aut} \Gamma$ such that $A^{\alpha} = B$ (setwise).

- We have been considering *k*-CS-transitive bipartite graphs arising from, so called, cycle-free partial orders.
- Such bipartite graphs are "tree-like", and for locally finite graphs cycle-freeness implies > 1 end.
- Using D-cuts and structure trees we classified the connected 3-CS-transitive locally finite graphs with more than one end.