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Introduction Graphs, ends and automorphisms

@ Agraph T is apair (VI ET)
o VI - vertex set
o ET - set of 2-element subsets of VT, the edge set.

o If {u,v} € ET we say that u and v are adjacent writing u ~ v.
@ The neighbourhood of uis M(u) = {v € VI : v ~ u}.

@ The degree of uis |[(u)].

@ Agraph I is locally finite if all of its vertices have finite degree.
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Introduction Graphs, ends and automorphisms

Rays and ends

Definition

Aray in a graph I is a sequence {V;};cn of distinct vertices such that
Vi ~ vjyq forall i € N.

The ends of a graph I are equivalence classes of rays.
Definition

The rays R and S are said to belong to the same end of the graph T if
thereis athirdray T suchthat | RN T|=|SN T| = N,.

N~ S "

/W\ S
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Introduction Graphs, ends and automorphisms

Example: 3-regular tree

R =red ray
B = blue ray

R and B belong to
different ends
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Introduction Graphs, ends and automorphisms

Example: a 2-ended graph

Example. Z, x Z with two equivalent rays

Y. Yo Y. ¥, Yy Y, ¥Ys Y Y,

R = (xo, X1, X2,...) and S = (yo, ¥1, Yo, . . .) belong to the same end
since with T = (xo, X1, 1, Y2, X2, X3, ¥3, Y4, X4, X5, V5, . . .) we have

IRNT|=|SNT|=Yg
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Introduction Graphs, ends and automorphisms

Rays and ends

@ The ends describe how the graph branches.

@ Each end corresponds to a “way of going to infinity”.

e If F C T isfinite and R is a ray then there is exactly one connected
component C of I' \ F such that |[R N C| = No.

@ Two rays R and S are not in the same end of I if and only if there
is a finite set F of vertices and distinct components C and D of
I\ Fsuchthat |[RN C|=|SND| =Y.

@ The number of ends is the least upper bound (possibly o) of the
number of infinite connected components that can be obtained by
removing finitely many vertices.
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Introduction Graphs, ends and automorphisms

Examples: A grid, a tree and a line

: : : : : a v,
I AN
I I | | | o 7 [ [
Grid has 1 end Tree has 2% ends

-=-=-- 4 4 @ 4 4 @ 4 4 -—-=--

Line has 2 ends
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Introduction Graphs, ends and automorphisms

Automorphisms

By Kénig’s infinity lemma any connected infinite locally finite graph has
at least one ray and therefore at least one end.

Definition
@ G = AutT - the full automorphism group of I
@ [ is vertex transitive if G acts transitively on VT.

Theorem (Diestel, Jung, Méller (1993))
A connected vertex transitive graph has either 1, 2 or 2% ends.
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Introduction Graphs, ends and automorphisms

Some other transitivity conditions

Distance - d(u, v) := minimum length of a path from uto v (u,v € VT)

o [ is k-distance-transitive if for each i with 0 </ < k, AutTl acts
transitively on the set {(u,v) € VI x VI : d(u,v) = i}.

@ An s-arc is a sequence vy, ..., Vs of vertices such that v; is
adjacentto vj;4 forall0 </ < s—1,and v; # vj, for
0<j<s-—-2.

@ A graph is s-arc transitive if its automorphism group acts
transitively on s-arcs.

Locally finite graphs with more than one end are very sensitive to
transitivity conditions such as these.
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Introduction Graphs, ends and automorphisms

Results

Let I' be a locally finite connected graph with more than one end.

Theorem (Méller (92))
IfT is 2-distance transitive then I is k-distance transitive for all k € N.

Theorem (Thomassen—Woess (93))
IfT is 2-arc transitive then T is a regular tree.

Theorem (Thomassen—Woess (93))

IfT is 1-arc transitive and all vertices have degree r, where r is a
prime, then T is a regular tree.

All these results can be proved using of the theory of structure trees.
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The theory of structure trees Tree sets and D-cuts

Boundaries and tight cuts

LeteC VI andlet e* := VI \

Definition

e.

Boundary de (red vertices):
{vee :dueeu~v}

Co-boundary de (blue edges):

{acET :ena#o& e Na+# o}

eC Vlisacutif |0el <R

A cut eis tight if both e and its
complement e* are connected
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The theory of structure trees Tree sets and D-cuts

Undirected tree sets

E C{AC VI :|6A| < Np} is an undirected tree set if &, VI ¢ E and:
@ (no crossing cuts) for all e, f € E one of the following holds

eCf, e C f*, e“Cf, or e Cf*

© (finite intervals) Ve, f € E there are only finitely many
geE:ecgcft;
© (complement closed) If e € E then e* € E, forall e € E.
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The theory of structure trees Tree sets and D-cuts

No crossing cuts

For all e, f € E one of the following holds
ecCf, ecCfr, e“Cf, or eCf*
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The theory of structure trees Tree sets and D-cuts

No crossing cuts

For all e, f € E one of the following holds
ecCf, ecCfr, e“Cf, or eCf*

This is allowed. These cuts do not “cross”.
T
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The theory of structure trees Tree sets and D-cuts

Cutting up graphs

Definition

Let G = AutT. If e is an infinite tight cut, with infinite complement, such
that E = Ge U Ge* is a tree set, then we say that e is a D-cut.
Theorem (Dunwoody (1982))

Any infinite connected graph with more than one end has a D-cut.

If eis a D-cut then E = Ge U Ge* is a tight undirected G-invariant tree
set.
Example. A D-cut einthe graph ' = Z
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The theory of structure trees Structure trees, the structure mapping, and ends

Structure tree

@ We use a tight undirected G-invariant tree set E to construct a tree

@ T(E) - has directed edges that come in pairs with edges in
one-one correspondence with the sets in the tree set E

@ e=(u,v)in T(E) = (v,u)in T(E) and is labelled by the
complement e* of e
@ Y :=the disjoint union of pairs of edges {e, e*} fore € E

* * * *
(XN ] €, Q c, GZO €] ez© e’ 64© e; P
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The theory of structure trees Structure trees, the structure mapping, and ends

Structure tree

Identify various vertices

f<eiffce&-[3ge E:fCgcC €]

Equivalence relation ~ on VY . .
e=(u,v),f=(x,y) € Ywrite v~ xif
x=voriff<e e e*  f f*
Pairs of edges are never identified y

A\

Define T = T(E) := Y/ ~.
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The theory of structure trees Structure trees, the structure mapping, and ends

Structure tree

Identify various vertices
f<eiffce&-[3ge E:fCgcC €]
Equivalence relation ~ on VY
e=(u,v),f=(x,y) € Ywrite v~ xif

x=voriff<«e

Pairs of edges are never identified

Define T=T(E) =Y/ ~. y

e T is connected and has no cycles of length greater than 2.
elfe=ep,e1,...,e,=fis adirected edge pathin T thenin T we
have eg D ey D ... D ep.
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The theory of structure trees Structure trees, the structure mapping, and ends

An infinite comb and a tree set

The comb I Structure tree T(E)
where E = Ge U Ge*

e E consists of the “teeth” of the comb and their complements
e The edges radiating out from the centre of T(E) correspond to the
“teeth” of the comb.
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The theory of structure trees Structure trees, the structure mapping, and ends

Example: An infinite comb and a different tree set

The tree set is F := Gf U Gf*

The tree set F consists of
“translates” of f and their
complements.

The corresponding structure tree
T(F) is aline, drawn below.

T(F)
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The theory of structure trees Structure trees, the structure mapping, and ends

The structure mapping

Definition (¢ : VI — T(E))

For v € VT let e(v) C E be the set of members of E to which v
belongs.

Let T(v) C T(E) be the subgraph of T induced by the directed edges
e(v).

For each edge pair f = (x, y), f* = (y, x) either f € e(v) or f* € e(v).

Fact. There is a unique vertex w in T(v) whose out degree is zero.
Every edge in T(v) “points towards” the vertex w.

Define ¢(v) := w.
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The theory of structure trees Structure trees, the structure mapping, and ends

Example: Structure map 1

The comb I’ Structure tree T(E)
where E = Ge U Ge*

e U belongs to its tooth and to the complements of all other teeth.
e v belongs to the complement of every tooth.
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The theory of structure trees Structure trees, the structure mapping, and ends

Example: Structure map 2

-------The tree set is F := Gf U Gf*

u and v’ both belong to f, all of its
translates to the left (supersets),
but none of its translates to the
right (subsets).

""" T v\ w7 v belongs to f*, all of its translates
______ to the right (supersets), but none of

its translates to the left (subsets).

£ 0w = o)

o(v)
f
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The theory of structure trees Structure trees, the structure mapping, and ends

Properties of ¢ : VI — T(E)

Proposition

The mapping ¢ has the following properties:

o Ifu,verl,and e € E with u € eand v € e*, then it follows that
p(u) # ¢(v).

o If p(u) = ¢(v) then we cannot distinguish between u and v just
using the tree set E.

@ G = Autl acts on the tree T(E).
@ The action of G commutes with the map ¢.
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Transitivity conditions: some applications

k-arc-transitive graphs

Applying the ideas to prove a result

Theorem (Thomassen—Woess (93))

LetT be a connected locally finite 1-arc transitive graph all of whose

vertices have degree r, where r is a prime. IfT has more than one end
thenT is a regular tree.

Proof outline

@ By Dunwoody’s theorem I has a D-cut ey C VT
@ Set E:=GeyuGe;, T = T(E),andfix ve VI
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Transitivity conditions: some applications

k-arc-transitive graphs

Applying the ideas to prove a result

Theorem (Thomassen—Woess (93))
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k-arc-transitive graphs

Applying the ideas to prove a result

Theorem (Thomassen—Woess (93))
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k-arc-transitive graphs

Applying the ideas to prove a result
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Transitivity conditions: some applications k-arc-transitive graphs

Applying the ideas to prove a result

Theorem (Thomassen—Woess (93))

LetT be a connected locally finite 1-arc transitive graph all of whose
vertices have degree r, where r is a prime. IfT has more than one end

thenT is a regular tree.
Proof outline
@ I 1-arc-transitive =
dc e N\ {0} : {x,y} € ET = dr(o(x), é(y)) = ¢
@ Claim 3. I does not have any cycles
@ Vo, Vq, Vo,...,V, - apathin I with no repeated vertices
@ Corollary = ¢(w), ¢(v2) are in different components of T \ ¢(vy).

® dr(¢(vo), ¢(v2)) = dr(d(vo), #(v1)) + dr(d(v1), ¢(v2)) = 2¢
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Transitivity conditions: some applications k-arc-transitive graphs

Applying the ideas to prove a result

Theorem (Thomassen—Woess (93))

LetT be a connected locally finite 1-arc transitive graph all of whose

vertices have degree r, where r is a prime. IfT has more than one end
thenT is a regular tree.

Proof outline

@ [ 1-arc-transitive =

dc e N\ {0} : {x,y} € ET = dr(¢(x),¢(y)) = ¢
@ Claim 3. I does not have any cycles

@ Vo, Vq, Vo,...,V, - apathin I with no repeated vertices
@ Corollary = ¢(w), ¢(v2) are in different components of T \ ¢(vy).

° dr(¢(vo), (v2)) = dr(¢(vo), ¢(v1)) + dr(p(v1), d(v2)) = 2¢
@ By induction, for all k, dr(¢(vo), ¢(vk)) = ke
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Transitivity conditions: some applications k-arc-transitive graphs

Applying the ideas to prove a result

Theorem (Thomassen—Woess (93))

LetT be a connected locally finite 1-arc transitive graph all of whose
vertices have degree r, where r is a prime. IfT has more than one end
thenT is a regular tree.

Proof outline

@ [ 1-arc-transitive =

dc € N\ {0} : {x,y} € ET = dr(¢(x), ¢(y)) = ¢
@ Claim 3. I does not have any cycles
@ Vo, Vq, Vo,...,V, - apathin I with no repeated vertices
@ Corollary = ¢(w), ¢(v2) are in different components of T \ ¢(vy).
o dr(é(vo), d(v2)) = dr(d(vo), &(vi)) + dr(é(v1), 6(v2)) = 2¢
@ By induction, for all k, dr(¢(vo), ¢(vk)) = ke

°.'.k>1—>V07éVk. L
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Summary

My own work, cycle-free partial orders

@ The other theorems above can be proved using structure trees.

Definition
A graph T is k-CS-transitive if for any finite isomorphic connected
substructures A and B, of size k, there is an automorphism « € AutT
such that A* = B (setwise).

@ We have been considering k-CS-transitive bipartite graphs arising
from, so called, cycle-free partial orders.

@ Such bipartite graphs are “tree-like”, and for locally finite graphs
cycle-freeness implies > 1 end.

@ Using D-cuts and structure trees we classified the connected
3-CS-transitive locally finite graphs with more than one end.
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