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Presentations

⟨A ∣ R⟩ = ⟨ a1, . . . , an
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

letters / generators

∣ u1 = v1, . . . , um = vm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

words / defining relations

⟩

▸ Defines the monoid M = A∗/ρ where ρ is the equivalence relation on
the free monoid A∗ of all words over A where two words are in the
same equivalence class (i.e. they represent the same element of M) if
one can be transformed into the other by applying the relations R.

Example
The free group F2 of rank 2 is defined by

⟨a,a−1,b,b−1 ∣ aa−1 = 1, a−1a = 1, bb−1 = 1, b−1b = 1⟩

In F2 we have

abb−1ab = aab = aaaa−1b = aaab−1ba−1b

but ab ≠ aab.
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Elements of the free group F2

F2 = Mon⟨a,a−1,b,b−1 ∣ aa−1 = 1, a−1a = 1, bb−1 = 1, b−1b = 1⟩

Cayley graph of F2

Vertices: Elements of F2.
Edges: g

xÐ→ gx for g ∈ F2 and
x ∈ A.

Fact: Every word w over the generators is
equal in F2 to a unique reduced word
red(w) with no occurrences of xx−1 or
x−1x.
e.g. abb−1aab−1ba−1b = aab.

This solves the word problem in F2:

w1 = w2 in F2 ⇔ red(w1) = red(w2) as words

The reduced words give normal forms for
elements of the free group.



Group presentations

G ≅ Gp⟨A ∣ ui = vi (i ∈ I)⟩ (ui, vi ∈ (A ∪ A−1)∗)

Elements of G - equivalence classes of words over A ∪ A−1 where
u = v in G⇔ we can transform u into v by applying defining relations or
relations from the free group.

Example
The free group F2 is defined by Gp⟨a,b ∣ ⟩.

Example
The free abelian group Z ×Z is defined by Gp⟨a,b ∣ ab = ba⟩.
Normal forms: aibj (i, j ∈ Z)

Definition
G is finitely presented if G ≅ Gp⟨A ∣ R⟩ with ∣A∣ <∞ and ∣R∣ <∞.



Subgroups of finitely presented groups

Question: What are the finitely generated subgroups of finitely presented
groups?
▸ There are finitely generated subgroups of finitely presented groups that

are not finitely presented
▸ e.g. Grunewald (1978): shows F2 × F2 has such a subgroup.

▸ Neumann (1937): There are uncountably many 2-generator groups.
⇒ Not every finitely generated group embeds in a finitely presented
group.

Computing subsets of (A ∪ A−1
)
∗

▸ A set W of words is computably enumerable if there is an algorithm
which takes any word u as input and, if u is a member of W, then the
algorithm eventually halts and says YES; otherwise it runs forever.

▸ A set W of words is computable if there is an algorithm which takes any
word u as input, terminates after a finite amount of time and decides
whether or not the word u belongs to W, returning either YES or NO.

Important fact: There exist sets of words that are c.e. but not computable.
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The Higman Embedding Theorem

Definition
A recursive presentation for a finitely generated group is a presentation on a
finite number of generators such that the set of defining relators is
computably enumerable.

Theorem (Higman (1961))
A finitely generated group G can be embedded in some finitely presented
group if and only if G can be recursively presented.

Example
For any computably enumerable subset S of N

Gp⟨a,b, c,d ∣ a−ibai = c−idci (i ∈ S)⟩

is recursively presented and hence embeds in a finitely presented group.
▸ Choosing S to be computably enumerable but non-computable
⇒ This group has undecidable word problem.
⇒ There are finitely presented groups with undecidable word problem.



Inverse monoids
An inverse monoid is a monoid M such that for every x ∈ M there is a unique
x−1 ∈ M such that xx−1x = x and x−1xx−1 = x−1.

m ∈ M is a right unit if there is an n ∈ M such that mn = 1, left unit is defined
analogously, and a unit is an element that is both a left and right unit.

Example: IX = monoid of all partial bijections X → X
Examples: In I3

(
1 2 3
2 3 −

)(
1 2 3
3 − 1) =

(
1 2 3
− 1 −

)

(
1 2 3
2 3 −

)

−1
= (

1 2 3
− 1 2)

Note:
γγ−1 = iddomγ

Group of units of IX: is the
symmetric group SX .



Inverse monoid presentations
An inverse monoid is a monoid M such that for every x ∈ M there is a unique
x−1 ∈ M such that xx−1x = x and x−1xx−1 = x−1.

For all x, y ∈ M we have

x = xx−1x, (x−1)−1 = x, (xy)−1 = y−1x−1, xx−1yy−1 = yy−1xx−1 (†)

Inv⟨A ∣ ui = vi (i ∈ I)⟩ = Mon⟨A ∪ A−1 ∣ ui = vi (i ∈ I) ∪ (†)⟩
where ui, vi ∈ (A ∪ A−1)∗ and x, y range over all words from (A ∪ A−1)∗.

Free inverse monoid FIM(A) = Inv⟨A ∣ ⟩

Munn (1974)
Elements of FIM(A) can be
represented using Munn trees. e.g. in
FIM(a,b) we have u = w where

u = aa−1bb−1ba−1abb−1

w = bbb−1a−1ab−1aa−1b



Special inverse monoids

Definition
A finitely presented special inverse monoid is one defined by a presentation
of the form

Inv⟨A ∣w1 = 1, . . . ,wk = 1⟩.

Motivation from the theory of one-relator monoids and groups

Theorem (Ivanov, Margolis, Meakin (2001))
If the word problem is decidable for all inverse monoids of the form
Inv⟨A ∣ r = 1⟩, with r a reduced word, then the word problem is also
decidable for every one-relation monoid Mon⟨A ∣ u = v⟩.

Theorem (Adjan (1966))
The group of units G of a one-relator monoid M = Mon⟨A ∣ r = 1⟩ is a
one-relator group. Furthermore, M has decidable word problem.

Aim: Study the subgroup structure of finitely presented special inverse
monoids.



Units of special inverse monoids

Monoids

Theorem (Makanin (1966))
The group of units G of M = Mon⟨A ∣ r1 = 1, . . . , rk = 1⟩ admits a k-relator
presentation. Furthermore, M has decidable word problem if and only if G
has decidable word problem.

Example
The group of units of M = Mon⟨a,b, c,d ∣ abab = 1,abcdabcdabcd = 1⟩ is
G = Gp⟨X,Y ∣ X2 = 1, (XY)3 = 1⟩.
Inverse monoids

Theorem (Ivanov, Margolis, Meakin (2001))
The group of units G of M = Inv⟨A ∣ r1 = 1, . . . , rk = 1⟩ is finitely generated.

Theorem (RDG & Ruškuc (2021))
There is a finitely presented special inverse monoid Inv⟨A ∣ r1 = 1, . . . , rk = 1⟩
whose group of units is not finitely presented.
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Units of special inverse monoids

Question: What are the groups of units of finitely presented special inverse
monoids?

Theorem (RDG & Kambites (2022))
The groups of units of finitely presented special inverse monoids are exactly
the finitely generated, recursively presented groups.
Notes:
▸ Equivalently, by Higman, these are exactly the finitely generated

subgroups of finitely presented groups.
▸ One direction of the proof is straightforward: Since the group of units is

a finitely generated subgroup of a finitely presented inverse monoid it
follows quickly it must itself be recursively presented.

▸ The other direction requires a construction to realise each such group as
the group of units.

▸ For this we use the theory of Schützenberger graphs.
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Schützenberger graphs

Definition
The Schützenberger graph SΓ(1) of M = Inv⟨A ∣ r1 = 1, . . . , rk = 1⟩ is the
subgraph of the Cayley graph of M induced on the set of right units of M.

Theorem (Stephen (1990))
The group of units of M = Inv⟨A ∣ r1 = 1, . . . , rk = 1⟩ is isomorphic to the
group Aut(SΓ(1)) of label-preserving automorphisms of the
Schützenberger graph SΓ(1).

Stephen’s procedure
The Schützenberger graph SΓ(1) can be obtained as the limit of a sequence
of labelled digraphs obtained by an iterative construction given by
successively applying operations called expansions and Stallings foldings.



Example - Stephen’s Procedure

b 7
a
7 an

r 7
b i s 7

b TX
a w
y a 7

b v s
a yb a r z t s s

7I
a s sb
a w s

jv bb a I
a
i 7

bi T
b A

7

7

Inv⟨a,b ∣ aba−1b−1 = 1⟩

Stephen’s procedure
Expansions: Attach a simple
closed path labelled by r at a
vertex (if one does not already
exist).
Stallings foldings: Identify
two edges with the same label
and the same initial or
terminal vertex.
This process may not stop.
Stephen shows that the
▸ process is confluent &
▸ limits in an appropriate

sense to SΓ(1).
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and the same initial or
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sense to SΓ(1).
The group of units is
Aut(SΓ(1)) = {1}.



Example - a non-trivial group of units
 

v
gwa e

x E
T b

r 7 v
L i r Ix x Vaa avbx c v

y b c x 7
v

L wa s
K i r o

vbra s vx va gc e

r vb rk Vb yx
x x va r7 v

o
x b

La I
r x7 a r v
b r v bx x

v

r ra r v
x Lb 7

r v

Inv⟨a,b, x ∣ xabx = 1⟩



Example - a non-trivial group of units

i i i t

in

f 7
f Yu v n a I

f t I
I t un i

I v n v I N

Hii a
L n t f

f Yu n o I

f t H
Y 1 f rti t.IT

Inv⟨a,b, x ∣ xabx = 1⟩

The group of units is

Aut(SΓ(1)) ≅ Z

the infinite cyclic group.



Our construction - the general idea

ΓH

Γ ∖ ΓHA∗

z p0 pk. . .

pi

p0

⋮

pi . .
.

pk

z p0 . . . pk

z p0 . . . pk

pk
⋮

p0

z

p0

⋮
pi

⋮

pk

z

p0

⋮

pj (j ≠ i)
. .
.

pk

▸ Given G = Gp⟨A ∣ R⟩ finitely presented, and H ≤ G a finitely generated
subgroup, we construct Inv⟨A ∣w1 = 1, . . . ,wk = 1⟩ whose SΓ(1) has the
above structure where Γ is the Cayley graph of G with respect to A, and
ΓH is the subgraph induced on the subset H of vertices.

▸ We prove every automorphism of SΓ(1) fixes ΓH setwise and deduce
Aut(SΓ(1)) ≅ Aut(ΓH) ≅ H.



One-relator case
Theorem (Adjan (1966))
The group of units G of a one-relator monoid M = Mon⟨A ∣ r = 1⟩ is a
one-relator group.

Theorem (RDG & Ruškuc (2021))
There exists a one-relator special inverse monoid M = Inv⟨A ∣ r = 1⟩ whose
group of units G is not a one-relator group.
Question: Is the group of units of Inv⟨A ∣ r = 1⟩ always finitely presented?
Definition. A finitely presented group G is said to be coherent if every
finitely generated subgroup of G is finitely presented.

Open problem (Baumslag (1973))
Is every one-relator group coherent?

▸ Louder and Wilton (2020) & independently Wise (2020) proved that
one-relator groups with torsion are coherent.

Theorem (RDG & Ruškuc (2021))
If all one-relator special inverse monoids Inv⟨A ∣ r = 1⟩ have finitely
presented groups of units then all one-relator groups are coherent.



Maximal subgroups in general

Definition
For any idempotent e = e2 in an inverse monoid M define

He = {m ∈ M ∶ mm−1 = e = m−1m}.

Then He is a group called a groupH-class of M.
e.g. H1 is the group of units of M.

Definition
A recursive presentation for a (countable but not necessarily finitely
generated) group is a presentation of the form Gp⟨A ∣ R⟩ where A is either
finite or A = {ai ∶ i ∈ N} and R is a computably enumerable subset of
(A ∪ A−1)∗.

Theorem (RDG & Kambites (2022))
The possible groupH-classes of finitely presented special inverse monoids
are exactly the (not necessarily finitely generated) recursively presented
groups.



One-relator case (maximal subgroups)

Theorem (RDG & Kambites (2022))
Every finitely generated subgroup of a one-relator group arises as a group
H-class in a one-relator special inverse monoid.

Question: Is every groupH-class of Inv⟨A ∣ r = 1⟩ necessarily finitely
generated?

The above question would be answered negatively if the answer to the
following is yes:

Question: Does there exist a one-relator group G = Gp⟨A ∣w = 1⟩ with a
finitely generated subgroup H ≤ G and an element g ∈ G such that H ∩ gHg−1

is not finitely generated.

▸ This relates to the Howson property - which asks that H ∩K is finitely
generated whenever H and K both are.
▸ There are one-relator groups (even hyperbolic ones) that do not have the

Howson property – Karrass & Solitar (1969), Kapovich (1999).


