The geometry of Schützenberger graphs and subgroups of special inverse monoids

Robert D. Gray¹ (joint work with Mark Kambites)

Seminar on Semigroups, Automata and Languages, Universidade do Porto, November 2022

¹Research supported by EPSRC Fellowship EP/V032003/1 'Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups'.

Presentations

$$
\langle A | R \rangle = \langle \underbrace{a_1, \ldots, a_n}_{\text{letters } \text{/ generators}} | \underbrace{u_1 = v_1, \ldots, u_m = v_m}_{\text{words } \text{/ defining relations}} \rangle
$$

► Defines the monoid $M = A^*/ρ$ where $ρ$ is the equivalence relation on the free monoid A^* of all words over A where two words are in the same equivalence class (i.e. they represent the same element of *M*) if one can be transformed into the other by applying the relations *R*.

Example

The free group F_2 of rank 2 is defined by

$$
\left\langle a,a^{-1},b,b^{-1} \ \mid \ aa^{-1}=1, \ a^{-1}a=1, \ bb^{-1}=1, \ b^{-1}b=1 \right\rangle
$$

In F_2 we have

$$
abb^{-1}ab = aab = aaaa^{-1}b = aaab^{-1}ba^{-1}b
$$

but $ab \neq aab$.

Presentations

$$
Mon\langle A \mid R \rangle = Mon\langle \underbrace{a_1, \ldots, a_n}_{\text{letters } \ell \text{ generators}} \mid \underbrace{u_1 = v_1, \ldots, u_m = v_m}_{\text{words } \ell \text{ defining relations}}
$$

► Defines the monoid $M = A^*/ρ$ where $ρ$ is the equivalence relation on the free monoid *A* ∗ of all words over *A* where two words are in the same equivalence class (i.e. they represent the same element of *M*) if one can be transformed into the other by applying the relations *R*.

Example

The free group F_2 of rank 2 is defined by

$$
Mon\langle a, a^{-1}, b, b^{-1} \mid aa^{-1} = 1, a^{-1}a = 1, bb^{-1} = 1, b^{-1}b = 1 \rangle
$$

In F_2 we have

$$
abb^{-1}ab = aab = aaaa^{-1}b = aaab^{-1}ba^{-1}b
$$

but $ab \neq aab$.

Elements of the free group F_2

$$
F_2 = \text{Mon}\langle a, a^{-1}, b, b^{-1} \mid aa^{-1} = 1, a^{-1}a = 1, bb^{-1} = 1, b^{-1}b = 1 \rangle
$$

Cayley graph of F_2

Vertices: Elements of F_2 . Edges: $g \stackrel{x}{\rightarrow} gx$ for $g \in F_2$ and *x* ∈ *A*.

Fact: Every word *w* over the generators is equal in F_2 to a unique reduced word red(*w*) with no occurrences of xx^{-1} or $x^{-1}x$.

e.g.
$$
abb^{-1}aab^{-1}ba^{-1}b = aab
$$
.

This solves the word problem in F_2 :

 $w_1 = w_2$ in $F_2 \Leftrightarrow \text{red}(w_1) = \text{red}(w_2)$ as words

The reduced words give normal forms for elements of the free group.

Group presentations

$$
G \cong \mathrm{Gp}\langle A \mid u_i = v_i \ (i \in I) \rangle \quad (u_i, v_i \in (A \cup A^{-1})^*)
$$

Elements of *G* - equivalence classes of words over $A \cup A^{-1}$ where

 $u = v$ in $G \Leftrightarrow$ we can transform *u* into *v* by applying defining relations or relations from the free group.

Example

The free group F_2 is defined by $Gp\langle a, b \rangle$.

Example

The free abelian group $\mathbb{Z} \times \mathbb{Z}$ is defined by $Gp\langle a, b | ab = ba \rangle$. Normal forms: $a^i b^j$ ($i, j \in \mathbb{Z}$)

Definition

G is finitely presented if $G \cong \text{Gp}(A | R)$ with $|A| < \infty$ and $|R| < \infty$.

Subgroups of finitely presented groups

Question: What are the finitely generated subgroups of finitely presented groups?

- ▸ There are finitely generated subgroups of finitely presented groups that are not finitely presented
	- e.g. Grunewald (1978): shows $F_2 \times F_2$ has such a subgroup.
- Neumann (1937): There are uncountably many 2-generator groups. ⇒ Not every finitely generated group embeds in a finitely presented group.

Subgroups of finitely presented groups

Question: What are the finitely generated subgroups of finitely presented groups?

- ▸ There are finitely generated subgroups of finitely presented groups that are not finitely presented
	- e.g. Grunewald (1978): shows $F_2 \times F_2$ has such a subgroup.
- Neumann (1937): There are uncountably many 2-generator groups. ⇒ Not every finitely generated group embeds in a finitely presented group.

Computing subsets of $(A \cup A^{-1})^*$

- ▸ A set *W* of words is computably enumerable if there is an algorithm which takes any word u as input and, if u is a member of W , then the algorithm eventually halts and says YES; otherwise it runs forever.
- ► A set *W* of words is computable if there is an algorithm which takes any word *u* as input, terminates after a finite amount of time and decides whether or not the word *u* belongs to *W*, returning either YES or NO.

Important fact: There exist sets of words that are c.e. but not computable.

The Higman Embedding Theorem

Definition

A recursive presentation for a finitely generated group is a presentation on a finite number of generators such that the set of defining relators is computably enumerable.

Theorem (Higman (1961))

A finitely generated group *G* can be embedded in some finitely presented group if and only if *G* can be recursively presented.

Example

For any computably enumerable subset *S* of N

$$
\operatorname{Gp}\langle a,b,c,d\mid a^{-i}ba^i=c^{-i}dc^i\ (i\in S)\rangle
$$

is recursively presented and hence embeds in a finitely presented group.

- ▸ Choosing *S* to be computably enumerable but non-computable \Rightarrow This group has undecidable word problem.
	- \Rightarrow There are finitely presented groups with undecidable word problem.

Inverse monoids

An inverse monoid is a monoid *M* such that for every $x \in M$ there is a unique $x^{-1} \in M$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$.

 $m \in M$ is a right unit if there is an $n \in M$ such that $mn = 1$, left unit is defined analogously, and a unit is an element that is both a left and right unit.

Example: I_X = monoid of all partial bijections $X \rightarrow X$

Examples: In I_3

$$
\begin{pmatrix} 1 & 2 & 3 \ 2 & 3 & - \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \ 3 & - & 1 \end{pmatrix} =
$$

$$
\begin{pmatrix} 1 & 2 & 3 \ - & 1 & - \end{pmatrix}
$$

$$
\begin{pmatrix} 1 & 2 & 3 \ 2 & 3 & - \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \ - & 1 & 2 \end{pmatrix}
$$

Note: $\gamma \gamma^{-1} = \mathrm{id}_{\mathrm{dom}\gamma}$

Group of units of I_X : is the symmetric group *SX*.

Inverse monoid presentations

An inverse monoid is a monoid *M* such that for every $x \in M$ there is a unique $x^{-1} \in M$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$.

For all $x, y \in M$ we have

$$
x = xx^{-1}x, \ (x^{-1})^{-1} = x, \ (xy)^{-1} = y^{-1}x^{-1}, \ xx^{-1}yy^{-1} = yy^{-1}xx^{-1} \tag{\dagger}
$$

$$
\text{Inv}\langle A \mid u_i = v_i \ (i \in I) \rangle = \text{Mon}\langle A \cup A^{-1} \mid u_i = v_i \ (i \in I) \cup (\dagger) \rangle
$$

where $u_i, v_i \in (A \cup A^{-1})^*$ and x, y range over all words from $(A \cup A^{-1})^*$. Free inverse monoid $FIM(A) = Inv\langle A | \rangle$

Munn (1974) Elements of FIM(*A*) can be represented using Munn trees. e.g. in FIM(a, b) we have $u = w$ where

$$
u = aa^{-1}bb^{-1}ba^{-1}abb^{-1}
$$

$$
w = bbb^{-1}a^{-1}ab^{-1}aa^{-1}b
$$

Special inverse monoids

Definition

A finitely presented special inverse monoid is one defined by a presentation of the form

```
Inv(A | w_1 = 1, ..., w_k = 1).
```
Motivation from the theory of one-relator monoids and groups

Theorem (Ivanov, Margolis, Meakin (2001))

If the word problem is decidable for all inverse monoids of the form Inv $\langle A \mid r = 1 \rangle$, with *r* a reduced word, then the word problem is also decidable for every one-relation monoid Mon $\langle A | u = v \rangle$.

Theorem (Adjan (1966))

The group of units *G* of a one-relator monoid $M = \text{Mon}(A \mid r = 1)$ is a one-relator group. Furthermore, *M* has decidable word problem.

Aim: Study the subgroup structure of finitely presented special inverse monoids.

Monoids

Theorem (Makanin (1966))

The group of units *G* of *M* = Mon $\langle A | r_1 = 1, ..., r_k = 1 \rangle$ admits a *k*-relator presentation. Furthermore, *M* has decidable word problem if and only if *G* has decidable word problem.

Example

The group of units of $M = \text{Mon}\langle a, b, c, d \mid abab = 1, abcdabcdabcd = 1\rangle$ is $G = \text{Gp}\langle X, Y | X^2 = 1, (XY)^3 = 1 \rangle.$

Inverse monoids

Theorem (Ivanov, Margolis, Meakin (2001))

The group of units *G* of *M* = Inv $\langle A | r_1 = 1, \ldots, r_k = 1 \rangle$ is finitely generated.

Theorem (RDG & Ruškuc (2021))

There is a finitely presented special inverse monoid $\text{Inv}(A \mid r_1 = 1, \ldots, r_k = 1)$ whose group of units is not finitely presented.

Monoids

Theorem (Makanin (1966))

The group of units *G* of *M* = Mon $\langle A | r_1 = 1, ..., r_k = 1 \rangle$ admits a *k*-relator presentation. Furthermore, *M* has decidable word problem if and only if *G* has decidable word problem.

Example

The group of units of $M = \text{Mon}\langle a, b, c, d \mid ab \, ab = 1, abcdabcdabcd = 1\rangle$ is $G = \text{Gp}\langle X, Y | X^2 = 1, (XY)^3 = 1 \rangle.$

Inverse monoids

Theorem (Ivanov, Margolis, Meakin (2001))

The group of units *G* of *M* = Inv $\langle A | r_1 = 1, \ldots, r_k = 1 \rangle$ is finitely generated.

Theorem (RDG & Ruškuc (2021))

There is a finitely presented special inverse monoid $\text{Inv}(A \mid r_1 = 1, \ldots, r_k = 1)$ whose group of units is not finitely presented.

Question: What are the groups of units of finitely presented special inverse monoids?

Question: What are the groups of units of finitely presented special inverse monoids?

Theorem (RDG & Kambites (2022))

The groups of units of finitely presented special inverse monoids are exactly the finitely generated, recursively presented groups.

Notes:

- ▸ Equivalently, by Higman, these are exactly the finitely generated subgroups of finitely presented groups.
- ▸ One direction of the proof is straightforward: Since the group of units is a finitely generated subgroup of a finitely presented inverse monoid it follows quickly it must itself be recursively presented.
- ▸ The other direction requires a construction to realise each such group as the group of units.
- ▸ For this we use the theory of Schützenberger graphs.

Schützenberger graphs

Definition

The Schützenberger graph *S*Γ(1) of *M* = Inv $\langle A | r_1 = 1, ..., r_k = 1 \rangle$ is the subgraph of the Cayley graph of *M* induced on the set of right units of *M*.

Theorem (Stephen (1990))

The group of units of $M = Inv(A | r_1 = 1, ..., r_k = 1)$ is isomorphic to the group Aut(*S*Γ(1)) of label-preserving automorphisms of the Schützenberger graph *S*Γ(1).

Stephen's procedure

The Schützenberger graph *S*Γ(1) can be obtained as the limit of a sequence of labelled digraphs obtained by an iterative construction given by successively applying operations called expansions and Stallings foldings.

Example - Stephen's Procedure

 $\text{Inv}\langle a,b \mid aba^{-1}b^{-1} = 1 \rangle$

Stephen's procedure

Expansions: Attach a simple closed path labelled by *r* at a vertex (if one does not already exist).

Stallings foldings: Identify two edges with the same label and the same initial or terminal vertex.

This process may not stop. Stephen shows that the

- \triangleright process is confluent &
- ▸ limits in an appropriate sense to *S*Γ(1).

Example - Stephen's Procedure

 $\text{Inv}\langle a,b \mid aba^{-1}b^{-1} = 1 \rangle$

Stephen's procedure

Expansions: Attach a simple closed path labelled by *r* at a vertex (if one does not already exist).

Stallings foldings: Identify two edges with the same label and the same initial or terminal vertex.

This process may not stop. Stephen shows that the

- \triangleright process is confluent &
- ▸ limits in an appropriate sense to *S*Γ(1).

Example - Stephen's Procedure

 $\text{Inv}\langle a,b \mid aba^{-1}b^{-1} = 1 \rangle$

Stephen's procedure

Expansions: Attach a simple closed path labelled by *r* at a vertex (if one does not already exist).

Stallings foldings: Identify two edges with the same label and the same initial or terminal vertex.

This process may not stop. Stephen shows that the

- \triangleright process is confluent &
- ▸ limits in an appropriate sense to *S*Γ(1).

The group of units is $Aut(S\Gamma(1)) = \{1\}.$

Example - a non-trivial group of units

 $Inv(a, b, x | xabx = 1)$

Example - a non-trivial group of units

 $Inv(a, b, x | xabx = 1)$

The group of units is

 $Aut(S\Gamma(1)) \cong \mathbb{Z}$

the infinite cyclic group.

Our construction - the general idea

- ▸ Given *G* = Gp⟨*A* ∣ *R*⟩ finitely presented, and *H* ≤ *G* a finitely generated subgroup, we construct $Inv(A | w_1 = 1, ..., w_k = 1)$ whose $ST(1)$ has the above structure where Γ is the Cayley graph of *G* with respect to *A*, and Γ_H is the subgraph induced on the subset *H* of vertices.
- ▸ We prove every automorphism of *S*Γ(1) fixes Γ*^H* setwise and deduce $Aut(S\Gamma(1)) \cong Aut(\Gamma_H) \cong H$.

One-relator case

Theorem (Adjan (1966))

The group of units *G* of a one-relator monoid $M = \text{Mon}(A \mid r = 1)$ is a one-relator group.

Theorem (RDG & Ruškuc (2021))

There exists a one-relator special inverse monoid $M = Inv\langle A | r = 1 \rangle$ whose group of units *G* is not a one-relator group.

Question: Is the group of units of Inv $\langle A | r = 1 \rangle$ always finitely presented?

Definition. A finitely presented group *G* is said to be coherent if every finitely generated subgroup of *G* is finitely presented.

Open problem (Baumslag (1973))

Is every one-relator group coherent?

▸ Louder and Wilton (2020) & independently Wise (2020) proved that one-relator groups with torsion are coherent.

Theorem (RDG & Ruškuc (2021))

If all one-relator special inverse monoids $\text{Inv}(A \mid r = 1)$ have finitely presented groups of units then all one-relator groups are coherent.

Maximal subgroups in general

Definition

For any idempotent $e = e^2$ in an inverse monoid *M* define

$$
H_e = \{m \in M : mm^{-1} = e = m^{-1}m\}.
$$

Then H_e is a group called a group H -class of M. e.g. H_1 is the group of units of M.

Definition

A recursive presentation for a (countable but not necessarily finitely generated) group is a presentation of the form $Gp\langle A | R \rangle$ where *A* is either finite or $A = \{a_i : i \in \mathbb{N}\}\$ and R is a computably enumerable subset of $(A \cup A^{-1})^*$.

Theorem (RDG & Kambites (2022))

The possible group H -classes of finitely presented special inverse monoids are exactly the (not necessarily finitely generated) recursively presented groups.

One-relator case (maximal subgroups)

Theorem (RDG & Kambites (2022))

Every finitely generated subgroup of a one-relator group arises as a group H-class in a one-relator special inverse monoid.

Question: Is every group H -class of Inv $\langle A | r = 1 \rangle$ necessarily finitely generated?

The above question would be answered negatively if the answer to the following is yes:

Question: Does there exist a one-relator group $G = \text{Gp}(A \mid w = 1)$ with a finitely generated subgroup *H* ≤ *G* and an element *g* ∈ *G* such that *H* ∩ *gHg*⁻¹ is not finitely generated.

- ▸ This relates to the Howson property which asks that *H* ∩ *K* is finitely generated whenever *H* and *K* both are.
	- ▸ There are one-relator groups (even hyperbolic ones) that do not have the Howson property – Karrass & Solitar (1969), Kapovich (1999).