Approaching cosets using Green's relations and Schützenberger groups

Robert Gray

Mini workshop in Algebra, CAUL April 2008

1/14

General question

How are the properties of a semigroup related to those of its substructures?

Index in group theory

- G group, H subgroup of G
 - The right cosets of H in G are the sets $\{Hg : g \in G\}$.
 - The index [G:H] is the number of (right) cosets of H in G.

G is the disjoint union of the cosets of H

Subgroups of finite index share many properties with their parent groups.

Finiteness conditions

Definition

A property \mathcal{P} of semigroups is a finiteness condition if all finite semigroups satisfy \mathcal{P} .

Examples

For a semigroup *S* the properties of being:

- ► finite
- finitely generated
- finitely presented
 - *S* is definable by a presentation $\langle A | R \rangle$ with *A* and *R* both finite
- residually finite
 - For any two distinct elements x, y ∈ S there exists a finite monoid T and a homomorphism φ : S → T such that φ(x) ≠ φ(y)

are all finiteness conditions.

And the list goes on: periodic, locally finite, automatic, ...

Finiteness conditions

Proposition

For groups the following finiteness conditions are preserved when taking finite index subgroups and when taking finite index extensions:

- ► finitely generated
- finitely presented

- ▶ periodic
- residually finite
 - ▶ automatic

 $\blacktriangleright FP_n$

- locally finite
- soluble word problem
- finite derivation type.

Idea

- Develop a theory of index for semigroups
- Use it to gain a better understanding of the relationship between the properties of a semigroup and those of its substructures.

Subgroups of monoids: translational index

- S monoid, K subgroup of S
 - ► The right cosets of *K* are the elements of the strong orbit of *K* under the action of *S* by right multiplication. So

Ks ($s \in S$) is a right coset $\Leftrightarrow \exists t \in S : Kst = K$.

► The (right) translational index of *K* is the number of right cosets.

Subgroups of monoids: translational index

- S monoid, K subgroup of S
 - ► The right cosets of *K* are the elements of the strong orbit of *K* under the action of *S* by right multiplication. So

Ks ($s \in S$) is a right coset $\Leftrightarrow \exists t \in S : Kst = K$.

► The (right) translational index of *K* is the number of right cosets.

Green's relations interpretation

- *H* the \mathcal{H} -class of *S* containing *K*, *R* the \mathcal{R} -class containing *K*.
 - The right cosets of *K* partition *R*
 - ► K has finite translational index iff [H : K] < ∞ and R contains only finitely many H-classes.</p>

Subgroups of monoids: translational index

- S monoid, K subgroup of S
 - ► The right cosets of *K* are the elements of the strong orbit of *K* under the action of *S* by right multiplication. So

Ks ($s \in S$) is a right coset $\Leftrightarrow \exists t \in S : Kst = K$.

► The (right) translational index of *K* is the number of right cosets.

Green's relations interpretation

- *H* the \mathcal{H} -class of *S* containing *K*, *R* the \mathcal{R} -class containing *K*.
 - ► The right cosets of *K* partition *R*
 - ► K has finite translational index iff [H : K] < ∞ and R contains only finitely many H-classes.</p>

Properties inherited

S - monoid, *K* - subgroup of *S* with finite translational index

Theorem (Ruskuc (1999))

If S is finitely presented (resp. generated) then K is finitely presented (resp. generated).

 Steinberg (2003) - for inverse semigroups gives an alternative proof using a topological approach.

Properties inherited

S - monoid, *K* - subgroup of *S* with finite translational index

Theorem (Ruskuc (1999))

If S is finitely presented (resp. generated) then K is finitely presented (resp. generated).

 Steinberg (2003) - for inverse semigroups gives an alternative proof using a topological approach.

Higher dimensions - Finite derivation type

- ► Is a property of finitely presented semigroups
- Can be thought of as a higher dimensional version of the property of being finitely presented. Think "relations between relations"
- ► Originated from work of C. Squier on finite complete rewriting systems

Theorem (RG & Malheiro (2007))

If S has finite derivation type then K has finite derivation type.

The converse

Cosets are local

- ▶ In general the properties of a single subgroup *K* of finite index in *S* will not influence the properties of *S*.
- e.g. Adjoin an extra identity 1 to S, let $K = \{1\}$, and consider $K \leq S^1$.

Covering the semigroup

S - monoid, and suppose there exists a finite collection K_1, \ldots, K_r of subgroups:

- each K_i has finite translational index
- the cosets of $K_1 \ldots, K_r$ cover *S*.

For a given property \mathcal{P} we can ask:

"If all K_i have property \mathcal{P} does it follow that *S* has property \mathcal{P} ?"

Regular semigroups

Let *S* be a regular semigroup with finitely many left and right ideals.

Theorem (Ruskuc (1999))

S is finitely presented (resp. finitely generated) if and only if all its maximal subgroups are finitely presented (resp. finitely generated).

Theorem (RG & Malheiro (2008))

S has finite derivation type if and only if all its maximal subgroups have finite derivation type.

Theorem (Golubov (1975))

S is residually finite if and only if all its maximal subgroups are residually finite.

► Actually, Golubov proved a stronger result, assuming only that each *J*-class contains finitely many *L*- and *R*-classes.

Question What about arbitrary (non-regular) semigroups?

Schützenberger groups

...the groups that never were

Given an \mathcal{H} -class H of any semigroup S we can associate a group with H.

- Let *S* be a monoid and let *H* be any \mathcal{H} -class of *S*.
- ▶ $T(H) = \{s \in S : Hs = H\}$: the stabilizer of H in S.
- The relation \sim on T(H) defined by:

$$x \sim y \Leftrightarrow (\forall h \in H)(hx = hy)$$

is a congruence.

► $\Gamma(H) = T(H) / \sim$ is a group, called the Schützenberger group of *H*.

Basic properties

- $\blacktriangleright |\Gamma(H)| = |H|$
- If H_1 and H_2 belong to the same \mathcal{D} -class then $\Gamma(H_1) \cong \Gamma(H_2)$.
- If *H* is a group then $\Gamma(H) \cong H$.

Non-regular semigroups

Let *S* be a monoid with finitely many left and right ideals.

Theorem (Ruskuc (2000))

S is finitely presented (resp. finitely generated) if and only if all its *Schützenberger groups are finitely presented* (resp. finitely generated).

Theorem (RG & Ruskuc 2007)

S is residually finite if and only if all its Schützenberger groups are residually finite.

- Applies to non-regular semigroups :-)
- But does not generalise Golubov :-(

Subsemigroups of monoids: relative Green's relations

Wallace (1962) - developed a theory of relative Green's relations

S - semigroup, T - subsemigroup of S, $a, b \in S$.

Definition (Relative Green's relations) $a\mathcal{L}^T b \Leftrightarrow T^1 a = T^1 b, \qquad a\mathcal{R}^T b \Leftrightarrow aT^1 = bT^1, \qquad \mathcal{H}^T = \mathcal{R}^T \cap \mathcal{L}^T.$

- ► The L^T-classes are the strong orbits under the action of T¹ on S by left multiplication (dually for R^T).
- $\mathcal{L}^T, \mathcal{R}^T$, and \mathcal{H}^T are equivalence relations.
- *T* is a union of \mathcal{R}^T -classes and is a union of \mathcal{L}^T -classes.

Subsemigroups of monoids: relative Green's relations

Wallace (1962) - developed a theory of relative Green's relations

S - semigroup, T - subsemigroup of S, $a, b \in S$.

Definition (Relative Green's relations) $a\mathcal{L}^T b \Leftrightarrow T^1 a = T^1 b, \qquad a\mathcal{R}^T b \Leftrightarrow aT^1 = bT^1, \qquad \mathcal{H}^T = \mathcal{R}^T \cap \mathcal{L}^T.$

- ► The L^T-classes are the strong orbits under the action of T¹ on S by left multiplication (dually for R^T).
- $\mathcal{L}^T, \mathcal{R}^T$, and \mathcal{H}^T are equivalence relations.
- *T* is a union of \mathcal{R}^T -classes and is a union of \mathcal{L}^T -classes.

Connection with cosets in group theory

G - group, H - subgroup.

- $\blacktriangleright \{ \mathcal{R}^H \text{-classes} \} = \{ \text{ left cosets of } H \}$
- $\blacktriangleright \{ \mathcal{L}^H \text{-classes} \} = \{ \text{ right cosets of } H \}$

Green index

S - semigroup, T subsemigroup of S

Definition

The Green index of *T* in *S* is the number of \mathcal{H}^T -classes of $S \setminus T$.

Example (Finite Green index)

Definition The Rees index of *T* in *S* is $|S \setminus T|$

- T has finite Rees index in $S \Rightarrow T$ has finite Green index in S.
- G group, H subgroup of G

• *H* has finite Green index \Leftrightarrow *H* has finite group-theoretic index.

Green index

S - semigroup, T subsemigroup of S

Definition

The Green index of *T* in *S* is the number of \mathcal{H}^T -classes of $S \setminus T$.

Example (Finite Green index)

Definition The Rees index of *T* in *S* is $|S \setminus T|$

- T has finite Rees index in $S \Rightarrow T$ has finite Green index in S.
- G group, H subgroup of G
 - *H* has finite Green index \Leftrightarrow *H* has finite group-theoretic index.

Generalised Schützenberger groups Associated with each \mathcal{H}^T -class H_i is a group Γ_i arising from the action of T on H_i .

Question How are the properties of *S* related to those of *T* and the groups Γ_i ?

Green index

S - semigroup, T subsemigroup of S

Definition

The Green index of *T* in *S* is the number of \mathcal{H}^T -classes of $S \setminus T$.

Example (Finite Green index)

Definition The Rees index of *T* in *S* is $|S \setminus T|$

- T has finite Rees index in $S \Rightarrow T$ has finite Green index in S.
- G group, H subgroup of G
 - *H* has finite Green index \Leftrightarrow *H* has finite group-theoretic index.

- If T has finite Rees index in S then all the groups Γ_i are finite.
- If S = G and $T = N \leq G$ then $\Gamma_i \cong N$ for all $i \in I$.

In both cases *T* has $\mathcal{P} \Rightarrow \Gamma_i$ has \mathcal{P} for all *i*. (\mathcal{P} = any finiteness condition)

Green index results

- S semigroup, T subsemigroup with finite Green index
- $H_i \ (i \in I)$ relative \mathcal{H} -classes in $S \setminus T$
- $\Gamma_i \ (i \in I)$ generalised Schützenberger groups

Theorem (RG and Ruskuc (2006))

S is finitely generated (resp. periodic, locally finite) if and only if *T* is finitely generated (resp. periodic, locally finite), in which case all the groups Γ_i are finitely generated (resp. periodic, locally finite).

Green index results

- S semigroup, T subsemigroup with finite Green index
- $H_i \ (i \in I)$ relative \mathcal{H} -classes in $S \setminus T$
- $\Gamma_i \ (i \in I)$ generalised Schützenberger groups

Theorem (RG and Ruskuc (2006))

S is finitely generated (resp. periodic, locally finite) if and only if *T* is finitely generated (resp. periodic, locally finite), in which case all the groups Γ_i are finitely generated (resp. periodic, locally finite).

Theorem (RG & Ruskuc (2006))

S is residually finite if and only if *T* and all the groups Γ_i are residually finite.

► There is an example of a semigroup S, with a finite Green index subsemigroup T ≤ S such that T is residually finite but S is not.

Green index results

S - semigroup, T - subsemigroup with finite Green index.

Theorem (RG & Ruskuc (2006))

If T is finitely presented and each group Γ_i is finitely presented then S is finitely presented.

- These results provide common generalisations of the corresponding results for finite index subgroups of groups, and finite Rees index subsemigroups of semigroups.
- e.g. for finite generation we obtain a common generalisation of Schreier's lemma for groups and Jura (1978) for semigroups.

Open problem. Prove that if *S* is finitely presented then *T* is finitely presented and each group Γ_i is finitely presented.