Approaching cosets using Green's relations and Schützenberger groups

Robert Gray

Mini workshop in Algebra, CAUL April 2008

1 / 14

General question

How are the properties of a semigroup related to those of its substructures?

Index in group theory

- *G* group, *H* subgroup of *G*
	- In The right cosets of *H* in *G* are the sets ${Hg : g \in G}$.
	- In The index $[G : H]$ is the number of (right) cosets of *H* in *G*.

G is the disjoint union of the cosets of *H*

Subgroups of finite index share many properties with their parent groups.

イロト イ母 トイヨ トイヨ トーヨ

Finiteness conditions

Definition

A property P of semigroups is a finiteness condition if all finite semigroups satisfy P.

Examples

For a semigroup *S* the properties of being:

- \blacktriangleright finite
- \blacktriangleright finitely generated
- \blacktriangleright finitely presented
	- \triangleright *S* is definable by a presentation $\langle A|R \rangle$ with *A* and *R* both finite
- \blacktriangleright residually finite
	- ► for any two distinct elements $x, y \in S$ there exists a finite monoid *T* and a homomorphism $\phi : S \to T$ such that $\phi(x) \neq \phi(y)$

are all finiteness conditions.

And the list goes on: periodic, locally finite, automatic, ...

Finiteness conditions

Proposition

For groups the following finiteness conditions are preserved when taking finite index subgroups and when taking finite index extensions:

- ▶ finitely generated ▶ finitely presented
	-

- \blacktriangleright periodic
- lacktriangleright in the value of the residually finite \blacksquare automatic
	-
- \blacktriangleright locally finite
- \triangleright soluble word problem
- \blacktriangleright finite derivation type.

Idea

 \triangleright Develop a theory of index for semigroups

 \blacktriangleright *FP_n*

 \triangleright Use it to gain a better understanding of the relationship between the properties of a semigroup and those of its substructures.

Subgroups of monoids: translational index

- *S* monoid, *K* subgroup of *S*
	- \triangleright The right cosets of *K* are the elements of the strong orbit of *K* under the action of *S* by right multiplication. So

Ks (*s* ∈ *S*) is a right coset $\Leftrightarrow \exists t \in S : Kst = K$.

 \triangleright The (right) translational index of *K* is the number of right cosets.

Subgroups of monoids: translational index

- *S* monoid, *K* subgroup of *S*
	- \triangleright The right cosets of *K* are the elements of the strong orbit of *K* under the action of *S* by right multiplication. So

Ks (*s* ∈ *S*) is a right coset $\Leftrightarrow \exists t \in S : Kst = K$.

 \triangleright The (right) translational index of *K* is the number of right cosets.

Green's relations interpretation

- *H* the H -class of *S* containing *K*, *R* the R -class containing *K*.
	- \blacktriangleright The right cosets of *K* partition *R*
	- ▶ *K* has finite translational index iff $[H : K] < \infty$ and *R* contains only finitely many H -classes.

Subgroups of monoids: translational index

- *S* monoid, *K* subgroup of *S*
	- \triangleright The right cosets of *K* are the elements of the strong orbit of *K* under the action of *S* by right multiplication. So

Ks (*s* ∈ *S*) is a right coset $\Leftrightarrow \exists t \in S : Kst = K$.

 \triangleright The (right) translational index of *K* is the number of right cosets.

Green's relations interpretation

- *H* the H -class of *S* containing *K*, *R* the R -class containing *K*.
	- \blacktriangleright The right cosets of *K* partition *R*
	- ▶ *K* has finite translational index iff $[H : K] < \infty$ and *R* contains only finitely many H -classes.

イロト イ母 トイヨ トイヨ トーヨ

Properties inherited

S - monoid, *K* - subgroup of *S* with finite translational index

Theorem (Ruskuc (1999))

If S is finitely presented (resp. generated) then K is finitely presented (resp. generated).

 \triangleright Steinberg (2003) - for inverse semigroups gives an alternative proof using a topological approach.

Properties inherited

S - monoid, *K* - subgroup of *S* with finite translational index

Theorem (Ruskuc (1999))

If S is finitely presented (resp. generated) then K is finitely presented (resp. generated).

 \triangleright Steinberg (2003) - for inverse semigroups gives an alternative proof using a topological approach.

Higher dimensions - Finite derivation type

- \triangleright Is a property of finitely presented semigroups
- \triangleright Can be thought of as a higher dimensional version of the property of being finitely presented. Think "relations between relations"
- \triangleright Originated from work of C. Squier on finite complete rewriting systems

Theorem (RG & Malheiro (2007))

If S has finite derivation type then K has finite derivation type.

The converse

Cosets are local

- In general the properties of a single subgroup K of finite index in S will not influence the properties of *S*.
- ► e.g. Adjoin an extra identity 1 to *S*, let $K = \{1\}$, and consider $K \leq S^1$.

Covering the semigroup

S - monoid, and suppose there exists a finite collection K_1, \ldots, K_r of subgroups:

- riangleright each K_i has finite translational index
- \blacktriangleright the cosets of K_1 ..., K_r cover *S*.

For a given property P we can ask:

"If all K_i have property P does it follow that *S* has property P ?"

Regular semigroups

Let *S* be a regular semigroup with finitely many left and right ideals.

Theorem (Ruskuc (1999))

S is finitely presented (resp. finitely generated) if and only if all its maximal subgroups are finitely presented (resp. finitely generated).

Theorem (RG & Malheiro (2008))

S has finite derivation type if and only if all its maximal subgroups have finite derivation type.

Theorem (Golubov (1975))

S is residually finite if and only if all its maximal subgroups are residually finite.

 \triangleright Actually, Golubov proved a stronger result, assuming only that each J -class contains finitely many \mathcal{L} - and \mathcal{R} -classes.

Question What about arbitrary (non-regular) semigroups?

Schützenberger groups

...the groups that never were

Given an H-class *H* of any semigroup *S* we can associate a group with *H*.

- In Let *S* be a monoid and let *H* be any H -class of *S*.
- \blacktriangleright $T(H) = \{s \in S : Hs = H\}$: the stabilizer of *H* in *S*.
- **►** The relation \sim on $T(H)$ defined by:

$$
x \sim y \Leftrightarrow (\forall h \in H)(hx = hy)
$$

is a congruence.

 $\Gamma(H) = T(H)/\sim$ is a group, called the Schützenberger group of *H*.

Basic properties

- \blacktriangleright $|\Gamma(H)| = |H|$
- **If** *H*₁ and *H*₂ belong to the same D-class then $\Gamma(H_1) \cong \Gamma(H_2)$.
- ► If *H* is a group then $\Gamma(H) \cong H$.

Non-regular semigroups

Let *S* be a monoid with finitely many left and right ideals.

Theorem (Ruskuc (2000))

S is finitely presented (resp. finitely generated) if and only if all its Schützenberger groups are finitely presented (resp. finitely generated).

Theorem (RG & Ruskuc 2007)

S is residually finite if and only if all its Schützenberger groups are residually finite.

10 / 14

イロト イ母 トイミト イミトー 毛

- \blacktriangleright Applies to non-regular semigroups :-)
- \blacktriangleright But does not generalise Golubov :-(

Subsemigroups of monoids: relative Green's relations

Wallace (1962) - developed a theory of relative Green's relations

S - semigroup, *T* - subsemigroup of *S*, $a, b \in S$.

Definition (Relative Green's relations)

 $a\mathcal{L}^T b \Leftrightarrow T^1 a = T^1 b$, $a\mathcal{R}^T b \Leftrightarrow aT^1 = bT^1$, $\mathcal{H}^T = \mathcal{R}^T \cap \mathcal{L}^T$.

 \blacktriangleright The \mathcal{L}^T -classes are the strong orbits under the action of T^1 on *S* by left multiplication (dually for \mathcal{R}^T).

11 / 14

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ ミ │ K)

- \blacktriangleright \mathcal{L}^T , \mathcal{R}^T , and \mathcal{H}^T are equivalence relations.
- If *T* is a union of \mathcal{R}^T -classes and is a union of \mathcal{L}^T -classes.

Subsemigroups of monoids: relative Green's relations

Wallace (1962) - developed a theory of relative Green's relations

S - semigroup, *T* - subsemigroup of *S*, $a, b \in S$.

Definition (Relative Green's relations) $a\mathcal{L}^T b \Leftrightarrow T^1 a = T^1 b$, $a\mathcal{R}^T b \Leftrightarrow aT^1 = bT^1$, $\mathcal{H}^T = \mathcal{R}^T \cap \mathcal{L}^T$.

- \blacktriangleright The \mathcal{L}^T -classes are the strong orbits under the action of T^1 on *S* by left multiplication (dually for \mathcal{R}^T).
- \blacktriangleright \mathcal{L}^T , \mathcal{R}^T , and \mathcal{H}^T are equivalence relations.
- If *T* is a union of \mathcal{R}^T -classes and is a union of \mathcal{L}^T -classes.

Connection with cosets in group theory

 G - group, H - subgroup.

- $\blacktriangleright \{ \mathcal{R}^H$ -classes $\} = \{ \text{ left cosets of } H \}$
- $\blacktriangleright \{ \mathcal{L}^H$ -classes $\} = \{ \text{right cosets of } H \}$

Green index

S - semigroup, *T* subsemigroup of *S*

Definition

The Green index of *T* in *S* is the number of \mathcal{H}^T -classes of $S \setminus T$.

Example (Finite Green index)

Definition The Rees index of *T* in *S* is $|S \setminus T|$

- \triangleright *T* has finite Rees index in *S* ⇒ *T* has finite Green index in *S*.
- *G* group, *H* subgroup of *G*

 \blacktriangleright *H* has finite Green index \Leftrightarrow *H* has finite group-theoretic index.

Green index

S - semigroup, *T* subsemigroup of *S*

Definition

The Green index of *T* in *S* is the number of \mathcal{H}^T -classes of $S \setminus T$.

Example (Finite Green index)

Definition The Rees index of *T* in *S* is $|S \setminus T|$

- \triangleright *T* has finite Rees index in *S* ⇒ *T* has finite Green index in *S*.
- *G* group, *H* subgroup of *G*

 \blacktriangleright *H* has finite Green index \Leftrightarrow *H* has finite group-theoretic index.

Generalised Schützenberger groups

Associated with each \mathcal{H}^T -class H_i is a group Γ*ⁱ* arising from the action of *T* on *Hⁱ* .

Question How are the properties of *S* related to those of *T* and the groups Γ*i*?

Green index

S - semigroup, *T* subsemigroup of *S*

Definition

The Green index of *T* in *S* is the number of \mathcal{H}^T -classes of $S \setminus T$.

Example (Finite Green index)

Definition The Rees index of *T* in *S* is $|S \setminus T|$

- \triangleright *T* has finite Rees index in *S* ⇒ *T* has finite Green index in *S*.
- *G* group, *H* subgroup of *G*

 \blacktriangleright *H* has finite Green index \Leftrightarrow *H* has finite group-theoretic index.

- If T has finite Rees index in S then all the groups Γ_i are finite.
- If *S* = *G* and *T* = *N* \trianglelefteq *G* then $\Gamma_i \cong N$ for all $i \in I$.

In both cases *T* has $P \Rightarrow \Gamma_i$ has *P* for all *i*. $(P = any finiteness condition)$

Green index results

- *S* semigroup, *T* subsemigroup with finite Green index
- *H_i* ($i \in I$) relative H -classes in $S \setminus T$
- Γ_i ($i \in I$) generalised Schützenberger groups

Theorem (RG and Ruskuc (2006))

S is finitely generated (resp. periodic, locally finite) if and only if T is finitely generated (resp. periodic, locally finite), in which case all the groups Γ*ⁱ are finitely generated (resp. periodic, locally finite).*

Green index results

- *S* semigroup, *T* subsemigroup with finite Green index
- *H_i* ($i \in I$) relative H -classes in $S \setminus T$
- Γ_i ($i \in I$) generalised Schützenberger groups

Theorem (RG and Ruskuc (2006))

S is finitely generated (resp. periodic, locally finite) if and only if T is finitely generated (resp. periodic, locally finite), in which case all the groups Γ*ⁱ are finitely generated (resp. periodic, locally finite).*

Theorem (RG & Ruskuc (2006))

S is residually finite if and only if T and all the groups Γ*ⁱ are residually finite.*

 \triangleright There is an example of a semigroup *S*, with a finite Green index subsemigroup $T \leq S$ such that *T* is residually finite but *S* is not.

Green index results

S - semigroup, *T* - subsemigroup with finite Green index.

Theorem (RG & Ruskuc (2006))

If T is finitely presented and each group Γ*ⁱ is finitely presented then S is finitely presented.*

- \triangleright These results provide common generalisations of the corresponding results for finite index subgroups of groups, and finite Rees index subsemigroups of semigroups.
- \triangleright e.g. for finite generation we obtain a common generalisation of Schreier's lemma for groups and Jura (1978) for semigroups.

Open problem. Prove that if *S* is finitely presented then *T* is finitely presented and each group Γ_i is finitely presented.