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Homogeneous relational structures

Definition
A relational structure M is homogeneous if every isomorphism between
finite substructures of M can be extended to an automorphism of M.

Relational structures

I a relational structure consists of a set A, and some relations R1, . . . , Rm

(can be unary, binary, ternary, ...)
I an (induced) substructure is obtained by taking a subset B ⊆ A and

keeping only those relations where all entries in the tuple belong to B
I an isomorphism is a “structure preserving” mapping (i.e. a bijection φ

such that φ and φ−1 are both homomorphisms)

Example

A graph Γ is a structure (VΓ,∼) where VΓ is a set, and ∼ is a symmetric
irreflexive binary relation on VΓ.
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Examples of homogeneous structures

X - a pure set
I automorphism group is the full symmetric group where any partial

permutation can be extended to a (full) permutation

(Q,≤) - the rationals with their usual ordering
I the automorphisms are the order-preserving permutations
I isomorphisms between finite substructures can be extended to

automorphisms that are piecewise-linear

Rado’s countable random graph R

I if we choose a countable graph at random (edges independently with
probability 1

2 ), then with probability 1 it is isomorphic to R
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Some history

Origins

I The notion of homogeneous structure goes back to the fundamental
work of Fraïssé (1953)

I Fraïssé proved a theorem which helps us determine if a countable
structure is homogeneous, using the ideas of:

I age - the finite substructures they embed, and
I amalgamation property - the way that they can be glued together

Homogeneous structures are nice because they:
I have “lots of” symmetry;
I often have rich and interesting automorphism groups.
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Connection with model theory
Common theme in model theory:

translation between “model theoretic terminology” and “permutation group
theoretic terminology”

Example.

(I) A structure M is ℵ0-categorical if all countable models of the
first-order theory of M are isomorphic to M.

(II) A permutation group on an infinite set Ω is called oligomorphic, if it
has finitely many orbits of n-tuples, for all n ≥ 1.

Theorem (Ryll-Nardzewski)

A countable structure M over a first-order language is ℵ0-categorical if and
only if Aut(M) is oligomorphic.

Homogeneous structures give examples of “nice” ℵ0-categorical structures
(precisely those that have quantifier elimination).
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Classification results

For certain families of relational structure, those members that are
homogeneous have been completely determined.

Some classification results

Finite Countably infinite
Posets (trivial) Schmerl (1979)
Tournaments Woodrow (1976) Lachlan (1984)
Graphs Gardiner (1976) Lachlan & Woodrow (1980)
Digraphs Lachlan (1982) Cherlin (1998)
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Set-homogeneity

Definition
A relational structure M is set-homogeneous if whenever two finite
substructures U and V are isomorphic, there is an automorphism
g ∈ Aut(M) such that Ug = V .

I It is a concept originally due to Fraïssé and Pouzet.
I The permutation group-theoretic weakening

homogeneous  set-homogeneous

relates to the model-theoretic weakening

elimination of quantifiers  model complete.

I Droste et al. (1994) - proved a set-homogeneous analogue of Fraïssé’s
theorem, where the amalgamation property is replaced by something
called the twisted amalgamation property.
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Set-homogeneity vs homogeneity
I Clearly if M is homogeneous then M is set-homogeneous.
I The converse is not true in general:

Example

Let M = (Q, R) where R is the ternary relation given by:

∀x, y, z ∈ M, (x, y, z) ∈ R ⇔ x < y < z.

I M is set-homogeneous
I any order-preserving bijection between between finite substructures is an

isomorphism that extends to an automorphism

I M is not homogeneous
I (0, 1) 7→ (0, 1) is an isomorphism between substructures
I it does not extend to an automorphism since (0, 1

2 , 1) ∈ R but
(1, x, 0) 6∈ R for any x ∈ Q.

General question

How much stronger is homogeneity than set-homogeneity?
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Set-homogeneous finite graphs

Ronse (1978)
...proved that for finite graphs homogeneity and set-homogeneity are
equivalent.

I He did this by classifying the finite set-homogeneus graphs and then
observing that they are all, in fact, homogeneous.

I This generalised an earlier result of Gardiner, classifying the finite
homogeneous graphs.

Enomoto (1981)
...gave a direct proof of the fact that for finite graphs set-homogeneous
implies homogeneous.

I this avoids the need to classify the set-homogeneous graphs
I the set-homogeneous classification can then be read off from Gardiner’s

result
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Some graph theoretic terminology and notation

Definition
Γ = (VΓ,∼) - a graph

So ∼ is a symmetric irreflexive binary relation on VΓ

I Let v be a vertex of Γ. Then the
neighbourhood Γ(v) of v is the set of all
vertices adjacent to v. So

Γ(v) = {w ∈ VΓ : w ∼ v}

I For X ⊆ VΓ we define

Γ(X) = {w ∈ VΓ : w ∼ x ∀x ∈ X}
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Enomoto’s argument

Lemma (Enomoto’s lemma)
Let Γ be a finite set-homogeneous graph and let U and V be induced
subgraphs of Γ. If U ∼= V then |Γ(U)| = |Γ(V)|.

Proof.

I Let g ∈ Aut(Γ) such that Ug = V .
I Then (Γ(U))g = Γ(V).
I In particular |Γ(U)| = |Γ(V)|.

14 / 37



Enomoto’s argument

Lemma (Enomoto’s lemma)
Let Γ be a finite set-homogeneous graph and let U and V be induced
subgraphs of Γ. If U ∼= V then |Γ(U)| = |Γ(V)|.

Proof.
I Let g ∈ Aut(Γ) such that Ug = V .

I Then (Γ(U))g = Γ(V).
I In particular |Γ(U)| = |Γ(V)|.

14 / 37



Enomoto’s argument

Lemma (Enomoto’s lemma)
Let Γ be a finite set-homogeneous graph and let U and V be induced
subgraphs of Γ. If U ∼= V then |Γ(U)| = |Γ(V)|.

Proof.
I Let g ∈ Aut(Γ) such that Ug = V .
I Then (Γ(U))g = Γ(V).

I In particular |Γ(U)| = |Γ(V)|.

14 / 37



Enomoto’s argument

Lemma (Enomoto’s lemma)
Let Γ be a finite set-homogeneous graph and let U and V be induced
subgraphs of Γ. If U ∼= V then |Γ(U)| = |Γ(V)|.

Proof.
I Let g ∈ Aut(Γ) such that Ug = V .
I Then (Γ(U))g = Γ(V).
I In particular |Γ(U)| = |Γ(V)|.

14 / 37



Enomoto’s argument
Γ - finite set-homogeneous graph X, Y - induced subgraphs
f : X → Y an isomorphism

f

X Y

Γ

Claim: The isomorphism f : X → Y is either an automorphism, or extends
to an isomorphism f ′ : X′ → Y ′ where X′ ) X and Y ′ ) Y .
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I Choose a ∈ Γ \ X with |Γ(a) ∩ X| as large as possible.

I Choose d ∈ Γ \ Y with |Γ(d) ∩ Y| as large as possible.
I Suppose |Γ(a) ∩ X| ≥ |Γ(d) ∩ Y| (the other possibility is dealt with

dually using the isomorphism f−1)
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Set-homogeneous digraphs
Question: Does Enomoto’s argument apply to other kinds of structure?

Definition (Digraphs)

A digraph D consists of a set VD of vertices together with an irreflexive
antisymmetric binary relation → on VD.

Definition (in- and out-neighbours)

A vertex v ∈ VD has a set of in-neighbours and a set of out-neighbours

D+(v) = {w ∈ VD : v → w}, D−(v) = {w ∈ VD : w → v}.

A vertex with red in-neighbours and blue out-neighbours
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Enomoto’s argument for digraphs
D - finite set-homogeneous digraph X, Y - induced subdigraphs
f : X → Y an isomorphism

f

X Y

Γ

a

A B

a a

a

1
2

3

b 1
2

3

b
b

b

I Follow the same steps but using out-neighbours instead of neighbours.
I Everything works, except the very last step.

I We do not know how b is related to the vertices in the set Y \ B.
So f ′ may not be an isomorphism.
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Enomoto’s argument for digraphs
The key point:

I For graphs, given u, v ∈ VΓ there are 2 possibilities

u ∼ v or u ‖ v (meaning that u & v are unrelated).

I For digraphs, given u, v ∈ VD there are 3 possibilities

u → v or v → u or u ‖ v.

However, the argument does work for tournaments:

Definition
A tournament is a digraph where for any pair of vertices u, v either u → v or
v → u.

Corollary

Let T be a finite tournament. Then T is homogeneous if and only if T is
set-homogeneous.
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A non-homogeneous example

Example

Let Dn denote the digraph with vertex set {0, . . . , n− 1} and just with arcs
i → i + 1 (mod n).

The digraph D5 is set-homogeneous but is not homogeneous.��������a
GG
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��
��
��
��
�

�������� b

��/
//

//
//

//
//

//
//

��������
e
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d

1

I (a, c) 7→ (a, d) gives an isomorphism between induced subdigraphs that
does not extend to an automorphism

I However, there is an automorphism sending {a, c} to {a, d}.
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Finite set-homogeneous digraphs

Question
How much bigger is the class of set-homogeneous digraphs than the class of
homogeneous digraphs?

Theorem (RG, Macpherson, Praeger (2007))

Let D be a finite set-homogeneous digraph. Then either D is homogeneous
or it is isomorphic to D5.

Proof.
I Carry out the classification of finite set-homogeneous digraphs.
I By inspection note that D5 is the only non-homogeneous example.
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Symmetric-digraphs (s-digraphs)
A common generalisation of graphs and digraphs

Definition (s-digraph)

I An s-digraph is the same as a digraph except that we allow pairs of
vertices to have arcs in both directions.

I So for any pair of vertices u, v exactly one of the following holds:

u → v, v → u, u ↔ v, u ‖ v.

I Formally we can think of an s-digraph as a structure M with two binary
relations → and ∼ where

I ∼ is irreflexive and symmetric (and corresponds to↔ above)
I → is irreflexive and antisymmetric
I ∼ and→ are disjoint

I A graph is an s-digraph (where there are no →-related vertices)
I A digraph is an s-digraph (where there are no ∼-related vertices)
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Classifying the finite homogeneous s-digraphs

I Lachlan (1982) classified the finite homogeneous s-digraphs

To state his result we need the notions of
I complement
I compositional product
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Finite homogeneous s-digraphs
Definition (Complement)

If M is an s-digraph, then M̄, the complement, is the s-digraph with the same
vertex set, such that u ∼ v in M̄ if and only if they are unrelated in M, and
u → v in M̄ if and only if v → u in M.

Example. �������� //GG
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Finite homogeneous s-digraphs

Definition (Composition)

If U and V are s-digraphs, the
compositional product U[V] denotes
the s-digraph which is

“|U| copies of V”

Vertex set = U × V

→ relations are of form
(u, v1) → (u, v2) where v1 → v2 in V ,
or of form (u1, v1) → (u2, v2) where
u1 → u2 in U,

Similarly for ∼.

K2 D3 K2[D3]
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Some finite homogeneous s-digraphs
Sporadic examples

L - finite homogeneous graphs, A - finite homogeneous digraphs,
S - finite homogeneous s-digraphs
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Some finite homogeneous s-digraphs
Sporadic examples

L - finite homogeneous graphs, A - finite homogeneous digraphs,
S - finite homogeneous s-digraphs
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C5, K3 × K3, H0, H1, H2
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Some finite homogeneous s-digraphs
Sporadic examples

H2 ∈ S

To complete the picture...

In H2 each vertex v has a
unique mate v′ to which it is
joined by an undirected edge.

Now if v → w then w → v′

where v′ is the mate of v.

Similarly, if w → v then
v′ → w.
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Lachlan’s classification
L - finite homogeneous graphs, A - finite homogeneous digraphs,
S - finite homogeneous s-digraphs

Theorem (Lachlan (1982))
Let M be a finite s-digraph. Then

Gardiner

(i) M ∈ L ⇔ M or M̄ is one of: C5, K3 × K3, Km[K̄n] (for 1 ≤ m, n ∈ N);

Lachlan

(ii) M ∈ A ⇔ M is one of: D3, D4, H0, K̄n, K̄n[D3], or D3[K̄n], for some
n ∈ N with 1 ≤ n;

(iii) M ∈ S ⇔ M or M̄ is isomorphic to an s-digraph of one of the following
forms. Kn[A], A[Kn], L, D3[L], L[D3], H1, H2, where n ∈ N with 1 ≤ n, A ∈ A
and L ∈ L.
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Set-homogeneous s-digraphs
Theorem (RG, Macpherson, Praeger (2007))

The finite s-digraphs that are set-homogeneous but not homogeneous are:

Infinite families (with n ∈ N)

(i) Kn[D5] or D5[Kn]
(ii) Jn
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Circular structures

I Construction discovered independently by Cameron and Macpherson.

Definition (the graph R(3))

I its vertex set is any countable dense subset of the unit circle such that
no two points make an angle of 2π/3 at the centre of the circle.

I To construct such a set begin with the set of all complex roots of unity
I partition into sets of size 3 with two vertices in the same part iff the angle

they make at the centre is a multiple of 2π/3
I choose representatives from these equivalence classes at random

I two vertices are adjacent iff the acute angle they make with the centre
of the circle is less than 2π/3

I i.e. they are adjacent when close enough together

Fact. Two graphs satisfying these properties are isomorphic.
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Countable set-homogeneous graphs

The neighbourhood of a
vertex in the graph R(3)

Theorem (Droste, Giraudet, Macpherson, Sauer (1994))

The graph R(3) is set-homogeneous but not 3-homogeneous. Moreover, any
set-homogeneous but not ≤ 3-homogeneous graph is isomorphic to R(3) or
its complement.
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T(4): a countable set-homogeneous digraph

Definition
Let T(4) be the digraph obtained by distributing countably many points
densely around the unit circle

I no two making an angle of π or π/2 at the centre
I such that x → y if and only if π/2 < arg(x/y) < π.

By a back-and-forth argument, this construction for T(4) determines unique
digraph.

The neighbourhood of a
vertex in the graph T(4)
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Properties of T(4)
Lemma
The digraph T(4) is set-homogeneous but not 2-homogeneous.

proof.
I set-homogeneity: shown by “expanding” T(4) to a homogeneous

structure
I not 2-homogeneous: there exist independent pairs that cannot be

swapped by any automorphism
I e.g. if x, y ∈ T(4) with 0 < arg(x/y) < π/2, then

I ∃z(z → x ∧ y → z) but
I ¬∃z(z → y ∧ x → z).

x y

z
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Rn (n ≥ 2): a family of set-homogeneous digraphs
Definition

I Let 2 ≤ n ≤ ℵ0

I let {Qi : i < n} be a partition of Q into n dense codense sets.

Define a digraph Rn with domain Q, putting a → b if and only if a < b and
there is no i < n such that a, b ∈ Qi.

By a back-and-forth argument, this construction for Rn determines unique
digraph.

Q

Q

Q

Q

1

2

3
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Properties of Rn

Lemma
The digraphs Rn (for n ≥ 2) are set-homogeneous but not 2-homogeneous.

proof.
I set-homogeneity: shown by “expanding” to a homogeneous structure
I not 2-homogeneous: for if x, y ∈ Q1 with x < y then there is z with

x → z → y but no z with y → z → x.
I ∴ (x, ymapsto(y, x)) does not extend to an automorphism.

Q

Q

Q

Q

1

2

3

x y

z
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A partial classification

Theorem (RG, Macpherson, Praeger (2007))

Let D be a countably infinite set-homogeneous digraph which is not
2-homogeneous. Then D is isomorphic to T(4) or to Rn for some n ≥ 2.

Open problems

I Is there a countably infinite tournament that is set-homogeneous but not
homogeneous?

I Classify the countably infinite set-homogeneous graphs (and digraphs).

Relating to the first of these questions, we know:

Proposition (RG, Macpherson, Praeger (2007))

Let T be a set-homogeneous tournament. Then T is 4-homogeneous.

37 / 37


	Motivation and background
	Homogeneous structures
	Classification results

	Weakening homogeneity
	Set-homogeneous structures
	Enomoto's argument for finite set-homogeneous graphs
	Classifying the finite set-homogeneous digraphs

	Infinite structures
	Countable set-homogeneous graphs
	Countable set-homogeneous digraphs


