Graphs and digraphs with many symmetries and a wonderfully elegant argument of Hikoe Enomoto

Robert Gray (joint work with C. E. Praeger and D. Macpherson)

St Andrews Pure Mathematics Colloquium May 2008

Outline

[Motivation and background](#page-2-0)

[Homogeneous structures](#page-3-0) [Classification results](#page-11-0)

[Weakening homogeneity](#page-13-0)

[Set-homogeneous structures](#page-14-0) [Enomoto's argument for finite set-homogeneous graphs](#page-21-0) [Classifying the finite set-homogeneous digraphs](#page-37-0)

[Infinite structures](#page-60-0)

[Countable set-homogeneous graphs](#page-61-0) [Countable set-homogeneous digraphs](#page-65-0)

Outline

[Motivation and background](#page-2-0)

[Homogeneous structures](#page-3-0) [Classification results](#page-11-0)

[Set-homogeneous structures](#page-14-0) [Enomoto's argument for finite set-homogeneous graphs](#page-21-0) [Classifying the finite set-homogeneous digraphs](#page-37-0)

[Countable set-homogeneous graphs](#page-61-0) [Countable set-homogeneous digraphs](#page-65-0)

Homogeneous relational structures

Definition

A relational structure *M* is homogeneous if every isomorphism between finite substructures of *M* can be extended to an automorphism of *M*.

Homogeneous relational structures

Definition

A relational structure *M* is homogeneous if every isomorphism between finite substructures of *M* can be extended to an automorphism of *M*.

Relational structures

- \triangleright a relational structure consists of a set *A*, and some relations R_1, \ldots, R_m (can be unary, binary, ternary, ...)
- \triangleright an (induced) substructure is obtained by taking a subset *B* ⊆ *A* and keeping only those relations where all entries in the tuple belong to *B*
- ightharpoonta is a "structure preserving" mapping (i.e. a bijection ϕ such that ϕ and ϕ^{-1} are both homomorphisms)

Example

A graph Γ is a structure (*V* Γ , \sim) where *V* Γ is a set, and \sim is a symmetric irreflexive binary relation on *V*Γ.

Examples of homogeneous structures

X - a pure set

- \triangleright automorphism group is the full symmetric group where any partial permutation can be extended to a (full) permutation
- (Q, \leq) the rationals with their usual ordering
	- \blacktriangleright the automorphisms are the order-preserving permutations
	- \triangleright isomorphisms between finite substructures can be extended to automorphisms that are piecewise-linear

Rado's countable random graph *R*

 \triangleright if we choose a countable graph at random (edges independently with probability $\frac{1}{2}$), then with probability 1 it is isomorphic to *R*

Some history

Origins

- \blacktriangleright The notion of homogeneous structure goes back to the fundamental work of Fraïssé (1953)
- \triangleright Fraïssé proved a theorem which helps us determine if a countable structure is homogeneous, using the ideas of:
	- \rightarrow age the finite substructures they embed, and
	- \triangleright amalgamation property the way that they can be glued together

Homogeneous structures are nice because they:

- \blacktriangleright have "lots of" symmetry;
- \triangleright often have rich and interesting automorphism groups.

Common theme in model theory:

translation between "model theoretic terminology" and "permutation group theoretic terminology"

Common theme in model theory:

translation between "model theoretic terminology" and "permutation group theoretic terminology"

Example.

- (I) A structure *M* is \aleph_0 -categorical if all countable models of the first-order theory of *M* are isomorphic to *M*.
- (II) A permutation group on an infinite set Ω is called oligomorphic, if it has finitely many orbits of *n*-tuples, for all $n \geq 1$.

Common theme in model theory:

translation between "model theoretic terminology" and "permutation group theoretic terminology"

Example.

- (I) A structure *M* is \aleph_0 -categorical if all countable models of the first-order theory of *M* are isomorphic to *M*.
- (II) A permutation group on an infinite set Ω is called oligomorphic, if it has finitely many orbits of *n*-tuples, for all $n \geq 1$.

Theorem (Ryll-Nardzewski)

A countable structure M over a first-order language is \aleph_0 -categorical if and *only if* Aut(*M*) *is oligomorphic.*

イロト イ母 トイミト イミトー 毛

Common theme in model theory:

translation between "model theoretic terminology" and "permutation group theoretic terminology"

Example.

- (I) A structure *M* is \aleph_0 -categorical if all countable models of the first-order theory of *M* are isomorphic to *M*.
- (II) A permutation group on an infinite set Ω is called oligomorphic, if it has finitely many orbits of *n*-tuples, for all $n \geq 1$.

Theorem (Ryll-Nardzewski)

A countable structure M over a first-order language is \aleph_0 -categorical if and *only if* Aut(*M*) *is oligomorphic.*

Homogeneous structures give examples of "nice" \aleph_0 -categorical structures (precisely those that have quantifier elimination). **◆ロト→ 伊ト→ モト→ モト → ヨー**

Classification results

For certain families of relational structure, those members that are homogeneous have been completely determined.

Some classification results

Outline

[Homogeneous structures](#page-3-0) [Classification results](#page-11-0)

[Weakening homogeneity](#page-13-0)

[Set-homogeneous structures](#page-14-0) [Enomoto's argument for finite set-homogeneous graphs](#page-21-0) [Classifying the finite set-homogeneous digraphs](#page-37-0)

[Countable set-homogeneous graphs](#page-61-0) [Countable set-homogeneous digraphs](#page-65-0)

Set-homogeneity

Definition

A relational structure *M* is set-homogeneous if whenever two finite substructures *U* and *V* are isomorphic, there is an automorphism $g \in$ Aut (M) such that $Ug = V$.

10 / 37

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

Set-homogeneity

Definition

A relational structure *M* is set-homogeneous if whenever two finite substructures *U* and *V* are isomorphic, there is an automorphism $g \in Aut(M)$ such that $Ug = V$.

- \blacktriangleright It is a concept originally due to Fraïssé and Pouzet.
- \blacktriangleright The permutation group-theoretic weakening

homogeneous \rightsquigarrow set-homogeneous

relates to the model-theoretic weakening

elimination of quantifiers \rightsquigarrow model complete.

 \triangleright Droste et al. (1994) - proved a set-homogeneous analogue of Fraïssé's theorem, where the amalgamation property is replaced by something called the twisted amalgamation property.

Set-homogeneity vs homogeneity

- \triangleright Clearly if *M* is homogeneous then *M* is set-homogeneous.
- \triangleright The converse is not true in general:

Example

Let $M = (\mathbb{Q}, R)$ where R is the ternary relation given by:

 $∀x, y, z ∈ M, (x, y, z) ∈ R$ ⇔ $x < y < z$.

\blacktriangleright *M* is set-homogeneous

 \triangleright any order-preserving bijection between between finite substructures is an isomorphism that extends to an automorphism

Set-homogeneity vs homogeneity

- \triangleright Clearly if *M* is homogeneous then *M* is set-homogeneous.
- \triangleright The converse is not true in general:

Example

Let $M = (\mathbb{Q}, R)$ where R is the ternary relation given by:

 $∀x, y, z ∈ M, (x, y, z) ∈ R$ ⇔ $x < y < z$.

\blacktriangleright *M* is set-homogeneous

 \triangleright any order-preserving bijection between between finite substructures is an isomorphism that extends to an automorphism

11 / 37

イロト (個) イヨトイヨト・ヨーの

- \blacktriangleright *M* is not homogeneous
	- \blacktriangleright $(0, 1) \mapsto (0, 1)$ is an isomorphism between substructures
	- it does not extend to an automorphism since $(0, \frac{1}{2}, 1) \in R$ but $(1, x, 0) \notin R$ for any $x \in \mathbb{Q}$.

Set-homogeneity vs homogeneity

- \triangleright Clearly if *M* is homogeneous then *M* is set-homogeneous.
- \triangleright The converse is not true in general:

Example

Let $M = (\mathbb{Q}, R)$ where R is the ternary relation given by:

 $∀x, y, z ∈ M, (x, y, z) ∈ R$ ⇔ $x < y < z$.

\blacktriangleright *M* is set-homogeneous

- \triangleright any order-preserving bijection between between finite substructures is an isomorphism that extends to an automorphism
- \blacktriangleright *M* is not homogeneous
	- \blacktriangleright $(0, 1) \mapsto (0, 1)$ is an isomorphism between substructures
	- it does not extend to an automorphism since $(0, \frac{1}{2}, 1) \in R$ but $(1, x, 0) \notin R$ for any $x \in \mathbb{Q}$.

General question

How much stronger is homogeneity than set-homo[gen](#page-16-0)[eit](#page-18-0)[y](#page-15-0)[?](#page-16-0)

Set-homogeneous finite graphs

Ronse (1978)

...proved that for finite graphs homogeneity and set-homogeneity are equivalent.

- \blacktriangleright He did this by classifying the finite set-homogeneus graphs and then observing that they are all, in fact, homogeneous.
- \triangleright This generalised an earlier result of Gardiner, classifying the finite homogeneous graphs.

Set-homogeneous finite graphs

Ronse (1978)

...proved that for finite graphs homogeneity and set-homogeneity are equivalent.

- \blacktriangleright He did this by classifying the finite set-homogeneus graphs and then observing that they are all, in fact, homogeneous.
- \triangleright This generalised an earlier result of Gardiner, classifying the finite homogeneous graphs.

Enomoto (1981)

...gave a direct proof of the fact that for finite graphs set-homogeneous implies homogeneous.

- \triangleright this avoids the need to classify the set-homogeneous graphs
- \triangleright the set-homogeneous classification can then be read off from Gardiner's result

Some graph theoretic terminology and notation

Definition

 $\Gamma = (V\Gamma, \sim)$ - a graph

So ∼ is a symmetric irreflexive binary relation on *V*Γ

 \blacktriangleright Let *v* be a vertex of Γ . Then the neighbourhood $\Gamma(\nu)$ of ν is the set of all vertices adjacent to *v*. So

$$
\Gamma(v) = \{ w \in V\Gamma : w \sim v \}
$$

 \blacktriangleright For $X \subseteq V\Gamma$ we define

 $\Gamma(X) = \{ w \in V\Gamma : w \sim x \ \forall x \in X \}$

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶ .

Lemma (Enomoto's lemma)

Let Γ *be a finite set-homogeneous graph and let U and V be induced subgraphs of* Γ *. If* $U \cong V$ *then* $|\Gamma(U)| = |\Gamma(V)|$ *.*

Proof.

イロト イ母 トイヨ トイヨ トーヨ 14 / 37

Lemma (Enomoto's lemma)

Let Γ *be a finite set-homogeneous graph and let U and V be induced subgraphs of* Γ *. If* $U \cong V$ *then* $|\Gamma(U)| = |\Gamma(V)|$ *.*

Proof.

► Let $g \in Aut(\Gamma)$ such that $Ug = V$.

Lemma (Enomoto's lemma)

Let Γ *be a finite set-homogeneous graph and let U and V be induced subgraphs of* Γ *. If* $U \cong V$ *then* $|\Gamma(U)| = |\Gamma(V)|$ *.*

14 / 37

 $A(D) \times A(D) \times A(D) \times A(D) \times B$

Proof.

- ► Let $g \in Aut(\Gamma)$ such that $Ug = V$.
- **Figure** Then $(\Gamma(U))g = \Gamma(V)$.

Lemma (Enomoto's lemma)

Let Γ *be a finite set-homogeneous graph and let U and V be induced subgraphs of* Γ *. If* $U \cong V$ *then* $|\Gamma(U)| = |\Gamma(V)|$ *.*

14 / 37

 $A(D) \times A(D) \times A(D) \times A(D) \times B$

Proof.

- ► Let $g \in Aut(\Gamma)$ such that $Ug = V$.
- **Figure** Then $(\Gamma(U))g = \Gamma(V)$.
- In particular $|\Gamma(U)| = |\Gamma(V)|$.

Γ - finite set-homogeneous graph *X*, *Y* - induced subgraphs

 $f: X \to Y$ an isomorphism

Claim: The isomorphism $f : X \to Y$ is either an automorphism, or extends to an isomorphism $f' : X' \to Y'$ where $X' \supsetneq X$ and $Y' \supsetneq Y$.

Γ - finite set-homogeneous graph *X*, *Y* - induced subgraphs

 $f: X \to Y$ an isomorphism

Proof of claim.

► Choose $a \in \Gamma \setminus X$ with $|\Gamma(a) \cap X|$ as large as possible.

Γ - finite set-homogeneous graph *X*, *Y* - induced subgraphs

 $f: X \to Y$ an isomorphism

Proof of claim.

- ► Choose $a \in \Gamma \setminus X$ with $|\Gamma(a) \cap X|$ as large as possible.
- ► Choose $d \in \Gamma \setminus Y$ with $|\Gamma(d) \cap Y|$ as large as possible.

Γ - finite set-homogeneous graph *X*, *Y* - induced subgraphs

 $f: X \to Y$ an isomorphism

Proof of claim.

- ► Choose $a \in \Gamma \setminus X$ with $|\Gamma(a) \cap X|$ as large as possible.
- ► Choose $d \in \Gamma \setminus Y$ with $|\Gamma(d) \cap Y|$ as large as possible.
- ► Suppose $|\Gamma(a) \cap X| \geq |\Gamma(d) \cap Y|$ (the other possibility is dealt with dually using the isomorphism f^{-1})

Γ - finite set-homogeneous graph *X*, *Y* - induced subgraphs

 $f: X \to Y$ an isomorphism

15 / 37

イロト イ押ト イミト イミト

Proof of claim.

► Let $A = \Gamma(a) \cap X$ and define $B = f(A)$.

Γ - finite set-homogeneous graph *X*, *Y* - induced subgraphs

 $f: X \to Y$ an isomorphism

Proof of claim.

- ► Let $A = \Gamma(a) \cap X$ and define $B = f(A)$.
- $A \cong B \& \Gamma$ is set-homogeneous so by the lemma $|\Gamma(A)| = |\Gamma(B)|$.

Γ - finite set-homogeneous graph *X*, *Y* - induced subgraphs

 $f: X \to Y$ an isomorphism

Proof of claim.

- ► Let $A = \Gamma(a) \cap X$ and define $B = f(A)$.
- $A \cong B \& \Gamma$ is set-homogeneous so by the lemma $|\Gamma(A)| = |\Gamma(B)|$.
- \blacktriangleright $\Gamma(B) \cap Y = f(\Gamma(A) \cap X)$ so $|\Gamma(B) \cap Y| = |\Gamma(A) \cap X|$.

Γ - finite set-homogeneous graph *X*, *Y* - induced subgraphs

 $f: X \to Y$ an isomorphism

Proof of claim.

- ► Let $A = \Gamma(a) \cap X$ and define $B = f(A)$.
- $A \cong B \& \Gamma$ is set-homogeneous so by the lemma $|\Gamma(A)| = |\Gamma(B)|$.
- \blacktriangleright $\Gamma(B) \cap Y = f(\Gamma(A) \cap X)$ so $|\Gamma(B) \cap Y| = |\Gamma(A) \cap X|$.

$$
\blacktriangleright \therefore |\Gamma(B) \setminus Y| = |\Gamma(A) \setminus X)| \ge 1
$$

Γ - finite set-homogeneous graph *X*, *Y* - induced subgraphs

 $f: X \to Y$ an isomorphism

Proof of claim.

► Let *b* ∈ $\Gamma(B) \setminus Y$ and extend *f* to *f'* : $X \cup \{a\} \rightarrow Y \cup \{b\}$ by defining $f'(a) = b.$

Γ - finite set-homogeneous graph *X*, *Y* - induced subgraphs

 $f: X \to Y$ an isomorphism

Proof of claim.

- ► Let *b* ∈ $\Gamma(B) \setminus Y$ and extend *f* to *f'* : $X \cup \{a\} \rightarrow Y \cup \{b\}$ by defining $f'(a) = b.$
- \blacktriangleright $\Gamma(b) \cap Y = B$ by maximality in original definition of *a*,

Γ - finite set-homogeneous graph *X*, *Y* - induced subgraphs

 $f: X \to Y$ an isomorphism

Proof of claim.

- ► Let *b* ∈ $\Gamma(B) \setminus Y$ and extend *f* to *f'* : $X \cup \{a\} \rightarrow Y \cup \{b\}$ by defining $f'(a) = b.$
- \blacktriangleright $\Gamma(b) \cap Y = B$ by maximality in original definition of *a*,
- \triangleright ∴ f' is an isomorphism.

Set-homogeneous digraphs

Question: Does Enomoto's argument apply to other kinds of structure?

Set-homogeneous digraphs

Question: Does Enomoto's argument apply to other kinds of structure?

Definition (Digraphs)

A digraph *D* consists of a set *VD* of vertices together with an irreflexive antisymmetric binary relation \rightarrow on *VD*.

Definition (in- and out-neighbours)

A vertex $v \in VD$ has a set of in-neighbours and a set of out-neighbours

$$
D^{+}(v) = \{ w \in VD : v \to w \}, \quad D^{-}(v) = \{ w \in VD : w \to v \}.
$$

A vertex with red in-neighbours and blue out-neighbours

イロト イ団 トイヨ トイヨ トー

D - finite set-homogeneous digraph *X*, *Y* - induced subdigraphs $f: X \to Y$ an isomorphism

- In Follow the same steps but using out-neighbours instead of neighbours.
- Everything works, except the very last step.

D - finite set-homogeneous digraph *X*, *Y* - induced subdigraphs $f: X \to Y$ an isomorphism

- In Follow the same steps but using out-neighbours instead of neighbours.
- \triangleright Everything works, except the very last step.
- \triangleright We do not know how *b* is related to the vertices in the set $Y \setminus B$. So f' may not be an isomorphism.

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

The key point:

 \triangleright For graphs, given *u*, *v* ∈ *V* Γ there are 2 possibilities

 $u \sim v$ or *u* || *v* (meaning that *u* & *v* are unrelated).

 \triangleright For digraphs, given *u*, *v* ∈ *VD* there are 3 possibilities

 $u \rightarrow v$ or $v \rightarrow u$ or $u \parallel v$.

The key point:

 \triangleright For graphs, given *u*, *v* ∈ *V* Γ there are 2 possibilities

 $u \sim v$ or *u* || *v* (meaning that *u* & *v* are unrelated).

 \triangleright For digraphs, given *u*, *v* ∈ *VD* there are 3 possibilities

 $u \rightarrow v$ or $v \rightarrow u$ or $u \parallel v$.

However, the argument does work for tournaments:

Definition

A tournament is a digraph where for any pair of vertices u, v either $u \rightarrow v$ or $\nu \rightarrow u$.

Corollary

Let T be a finite tournament. Then T is homogeneous if and only if T is set-homogeneous.

A non-homogeneous example

Example

Let *D_n* denote the digraph with vertex set $\{0, \ldots, n-1\}$ and just with arcs $i \rightarrow i+1 \pmod{n}$.

The digraph D_5 is set-homogeneous but is not homogeneous.

 \triangleright $(a, c) \mapsto (a, d)$ gives an isomorphism between induced subdigraphs that does not extend to an automorphism

However, there is an automorphism sending $\{a, c\}$ to $\{a, d\}$.

Finite set-homogeneous digraphs

Question

How much bigger is the class of set-homogeneous digraphs than the class of homogeneous digraphs?

20 / 37

イロト イ母 トイヨ トイヨ トーヨ

Finite set-homogeneous digraphs

Ouestion

How much bigger is the class of set-homogeneous digraphs than the class of homogeneous digraphs?

Theorem (RG, Macpherson, Praeger (2007))

*Let D be a finite set-homogeneous digraph. Then either D is homogeneous or it is isomorphic to D*5*.*

Proof.

- \triangleright Carry out the classification of finite set-homogeneous digraphs.
- By inspection note that D_5 is the only non-homogeneous example.

Symmetric-digraphs (s-digraphs)

A common generalisation of graphs and digraphs

Definition (s-digraph)

- \triangleright An s-digraph is the same as a digraph except that we allow pairs of vertices to have arcs in both directions.
- \triangleright So for any pair of vertices *u*, *v* exactly one of the following holds:

 $u \rightarrow v$, $v \rightarrow u$, $u \leftrightarrow v$, $u \parallel v$.

Symmetric-digraphs (s-digraphs)

A common generalisation of graphs and digraphs

Definition (s-digraph)

- \triangleright An s-digraph is the same as a digraph except that we allow pairs of vertices to have arcs in both directions.
- \triangleright So for any pair of vertices *u*, *v* exactly one of the following holds:

 $u \rightarrow v$, $v \rightarrow u$, $u \leftrightarrow v$, $u \parallel v$.

- Formally we can think of an s-digraph as a structure M with two binary relations \rightarrow and \sim where
	- $\triangleright \sim$ is irreflexive and symmetric (and corresponds to \leftrightarrow above)
	- \rightarrow is irreflexive and antisymmetric
	- $\triangleright \sim$ and \rightarrow are disjoint
- A graph is an s-digraph (where there are no \rightarrow -related vertices)
- \triangleright A digraph is an s-digraph (where there are no \sim -related vertices)

Classifying the finite homogeneous s-digraphs

 \blacktriangleright Lachlan (1982) classified the finite homogeneous s-digraphs

To state his result we need the notions of

- \blacktriangleright complement
- \triangleright compositional product

Finite homogeneous s-digraphs

Definition (Complement)

If *M* is an s-digraph, then \overline{M} , the complement, is the s-digraph with the same vertex set, such that $u \sim v$ in \overline{M} if and only if they are unrelated in *M*, and $u \rightarrow v$ in \overline{M} if and only if $v \rightarrow u$ in M .

Finite homogeneous s-digraphs

Definition (Composition)

If *U* and *V* are s-digraphs, the compositional product *U*[*V*] denotes the s-digraph which is

"|*U*| copies of *V*"

```
Vertex set = U \times V
```
 \rightarrow relations are of form $(u, v_1) \rightarrow (u, v_2)$ where $v_1 \rightarrow v_2$ in *V*, or of form $(u_1, v_1) \rightarrow (u_2, v_2)$ where $u_1 \rightarrow u_2$ in *U*,

Similarly for \sim .

イロト イ押 トイモ トイモト

Some finite homogeneous s-digraphs

Sporadic examples

- $\mathcal L$ finite homogeneous graphs, $\mathcal A$ finite homogeneous digraphs,
- S finite homogeneous s-digraphs

Some finite homogeneous s-digraphs

Sporadic examples

- $\mathcal L$ finite homogeneous graphs, $\mathcal A$ finite homogeneous digraphs,
- S finite homogeneous s-digraphs

メロトメ 伊 トメ ミトメ ミトー

Some finite homogeneous s-digraphs

Sporadic examples

To complete the picture...

In H_2 each vertex ν has a unique mate v' to which it is joined by an undirected edge.

Now if $v \to w$ then $w \to v'$ where v' is the mate of v .

Similarly, if $w \rightarrow v$ then $v' \rightarrow w$.

イロト イ押 トイミト イミトー 店

Lachlan's classification

 $\mathcal L$ - finite homogeneous graphs, $\mathcal A$ - finite homogeneous digraphs, S - finite homogeneous s-digraphs

Theorem (Lachlan (1982))

Let M be a finite s-digraph. Then

Gardiner

 $(i) M \in \mathcal{L} \Leftrightarrow M$ or \overline{M} is one of: C_5 , $K_3 \times K_3$, $K_m[\overline{K}_n]$ (for $1 \leq m, n \in \mathbb{N}$);

Lachlan's classification

 $\mathcal L$ - finite homogeneous graphs, $\mathcal A$ - finite homogeneous digraphs, S - finite homogeneous s-digraphs

Theorem (Lachlan (1982))

Let M be a finite s-digraph. Then

Gardiner

 $(i) M \in \mathcal{L} \Leftrightarrow M$ or \overline{M} is one of: C_5 , $K_3 \times K_3$, $K_m[\overline{K}_n]$ (for $1 \leq m, n \in \mathbb{N}$);

Lachlan

 $(iii) M \in \mathcal{A} \Leftrightarrow M$ is one of: D_3 , D_4 , H_0 , \bar{K}_n , $\bar{K}_n[D_3]$, or $D_3[\bar{K}_n]$, for some $n \in \mathbb{N}$ *with* $1 \leq n$;

Lachlan's classification

 $\mathcal L$ - finite homogeneous graphs, $\mathcal A$ - finite homogeneous digraphs, S - finite homogeneous s-digraphs

Theorem (Lachlan (1982))

Let M be a finite s-digraph. Then

Gardiner

 $(i) M \in \mathcal{L} \Leftrightarrow M$ or \overline{M} is one of: C_5 , $K_3 \times K_3$, $K_m[\overline{K}_n]$ (for $1 \leq m, n \in \mathbb{N}$);

Lachlan

 $(iii) M \in \mathcal{A} \Leftrightarrow M$ is one of: D_3 , D_4 , H_0 , \overline{K}_n , $\overline{K}_n[D_3]$ *, or* $D_3[\overline{K}_n]$ *, for some* $n \in \mathbb{N}$ *with* $1 \leq n$;

(iii) $M \in \mathcal{S} \Leftrightarrow M$ or \overline{M} is isomorphic to an s-digraph of one of the following *forms.* $K_n[A], A[K_n], L, D_3[L], L[D_3], H_1, H_2$, where $n \in \mathbb{N}$ with $1 \leq n, A \in \mathcal{A}$ *and* $L \in \mathcal{L}$ *.*

Set-homogeneous s-digraphs

Theorem (RG, Macpherson, Praeger (2007))

The finite s-digraphs that are set-homogeneous but not homogeneous are:

Infinite families (with $n \in \mathbb{N}$ **)**

(i) $K_n[D_5]$ or $D_5[K_n]$ (i) J_n

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

Set-homogeneous s-digraphs

Theorem (RG, Macpherson, Praeger (2007))

The finite s-digraphs that are set-homogeneous but not homogeneous are:

Infinite families (with $n \in \mathbb{N}$ **)**

(i) $K_n[D_5]$ or $D_5[K_n]$ (iii) J_n

イロト イ押ト イミト イミト

Set-homogeneous s-digraphs

Theorem (RG, Macpherson, Praeger (2007))

The finite s-digraphs that are set-homogeneous but not homogeneous are:

Infinite families (with $n \in \mathbb{N}$)

Outline

[Homogeneous structures](#page-3-0) [Classification results](#page-11-0)

[Set-homogeneous structures](#page-14-0) [Enomoto's argument for finite set-homogeneous graphs](#page-21-0) [Classifying the finite set-homogeneous digraphs](#page-37-0)

[Infinite structures](#page-60-0)

[Countable set-homogeneous graphs](#page-61-0) [Countable set-homogeneous digraphs](#page-65-0)

Circular structures

 \triangleright Construction discovered independently by Cameron and Macpherson.

Definition (the graph *R*(3))

 \triangleright its vertex set is any countable dense subset of the unit circle such that no two points make an angle of $2\pi/3$ at the centre of the circle.

Circular structures

 \triangleright Construction discovered independently by Cameron and Macpherson.

Definition (the graph *R*(3))

- \triangleright its vertex set is any countable dense subset of the unit circle such that no two points make an angle of $2\pi/3$ at the centre of the circle.
	- \triangleright To construct such a set begin with the set of all complex roots of unity
	- \triangleright partition into sets of size 3 with two vertices in the same part iff the angle they make at the centre is a multiple of $2\pi/3$
	- \triangleright choose representatives from these equivalence classes at random

Circular structures

 \triangleright Construction discovered independently by Cameron and Macpherson.

Definition (the graph *R*(3))

- \triangleright its vertex set is any countable dense subset of the unit circle such that no two points make an angle of $2\pi/3$ at the centre of the circle.
	- \triangleright To construct such a set begin with the set of all complex roots of unity
	- \triangleright partition into sets of size 3 with two vertices in the same part iff the angle they make at the centre is a multiple of $2\pi/3$
	- \triangleright choose representatives from these equivalence classes at random
- \triangleright two vertices are adjacent iff the acute angle they make with the centre of the circle is less than $2\pi/3$
- \triangleright i.e. they are adjacent when close enough together

Fact. Two graphs satisfying these properties are isomorphic.

Countable set-homogeneous graphs

The neighbourhood of a vertex in the graph $R(3)$

Theorem (Droste, Giraudet, Macpherson, Sauer (1994))

The graph R(3) *is set-homogeneous but not* 3*-homogeneous. Moreover, any set-homogeneous but not* ≤ 3*-homogeneous graph is isomorphic to R*(3) *or its complement.*

T(4): a countable set-homogeneous digraph

Definition

Let $T(4)$ be the digraph obtained by distributing countably many points densely around the unit circle

- ightharpoontharpoontal notation in the centre in the
- \triangleright such that $x \to y$ if and only if $\pi/2 < \arg(x/y) < \pi$.

By a back-and-forth argument, this construction for $T(4)$ determines unique digraph.

The neighbourhood of a vertex in the graph $T(4)$

イロト イ押 トイヨ トイヨ トー

Properties of *T*(4)

Lemma

The digraph T(4) *is set-homogeneous but not 2-homogeneous.*

proof.

- \triangleright set-homogeneity: shown by "expanding" $T(4)$ to a homogeneous structure
- \triangleright not 2-homogeneous: there exist independent pairs that cannot be swapped by any automorphism
- \triangleright e.g. if *x*, *y* ∈ *T*(4) with 0 < arg(*x/y*) < π/2, then

$$
\blacktriangleright \exists z(z \to x \land y \to z) \text{ but }
$$

$$
\rightarrow \neg \exists z (z \rightarrow y \land x \rightarrow z).
$$

R_n ($n \geq 2$): a family of set-homogeneous digraphs Definition

- \blacktriangleright Let $2 \leq n \leq \aleph_0$
- It let ${Q_i : i < n}$ be a partition of $\mathbb Q$ into *n* dense codense sets.

Define a digraph R_n with domain \mathbb{Q} , putting $a \rightarrow b$ if and only if $a < b$ and there is no $i < n$ such that $a, b \in Q_i$.

By a back-and-forth argument, this construction for *Rⁿ* determines unique digraph.

Properties of *Rⁿ*

Lemma

The digraphs R_n (for $n > 2$) are set-homogeneous but not 2-homogeneous.

proof.

- \triangleright set-homogeneity: shown by "expanding" to a homogeneous structure
- not 2-homogeneous: for if *x*, $y \in Q_1$ with $x < y$ then there is *z* with $x \rightarrow z \rightarrow y$ but no *z* with $y \rightarrow z \rightarrow x$.
- \blacktriangleright ∴ $(x, \text{vmapsto}(y, x))$ does not extend to an automorphism.

A partial classification

Theorem (RG, Macpherson, Praeger (2007))

Let D be a countably infinite set-homogeneous digraph which is not 2-homogeneous. Then D is isomorphic to $T(4)$ or to R_n for some $n > 2$.

Open problems

- In Is there a countably infinite tournament that is set-homogeneous but not homogeneous?
- \triangleright Classify the countably infinite set-homogeneous graphs (and digraphs).

Relating to the first of these questions, we know:

Proposition (RG, Macpherson, Praeger (2007))

Let *T* be a set-homogeneous tournament. Then *T* is 4-homogeneous.