Graphs and digraphs with many symmetries and a wonderfully elegant argument of Hikoe Enomoto

Robert Gray (joint work with C. E. Praeger and D. Macpherson)

St Andrews Pure Mathematics Colloquium May 2008

Outline

Motivation and background

Homogeneous structures Classification results

Weakening homogeneity

Set-homogeneous structures Enomoto's argument for finite set-homogeneous graphs Classifying the finite set-homogeneous digraphs

Infinite structures

Countable set-homogeneous graphs Countable set-homogeneous digraphs

Outline

Motivation and background

Homogeneous structures Classification results

Weakening homogeneity

Set-homogeneous structures Enomoto's argument for finite set-homogeneous graphs Classifying the finite set-homogeneous digraphs

Infinite structures

Countable set-homogeneous graphs Countable set-homogeneous digraphs

Homogeneous relational structures

Definition

A relational structure M is homogeneous if every isomorphism between finite substructures of M can be extended to an automorphism of M.

Homogeneous relational structures

Definition

A relational structure M is homogeneous if every isomorphism between finite substructures of M can be extended to an automorphism of M.

Relational structures

- ▶ a relational structure consists of a set A, and some relations R₁,..., R_m (can be unary, binary, ternary, ...)
- an (induced) substructure is obtained by taking a subset B ⊆ A and keeping only those relations where all entries in the tuple belong to B
- an isomorphism is a "structure preserving" mapping (i.e. a bijection φ such that φ and φ⁻¹ are both homomorphisms)

Example

A graph Γ is a structure $(V\Gamma, \sim)$ where $V\Gamma$ is a set, and \sim is a symmetric irreflexive binary relation on $V\Gamma$.

Examples of homogeneous structures

X - a pure set

- automorphism group is the full symmetric group where any partial permutation can be extended to a (full) permutation
- (\mathbb{Q},\leq) the rationals with their usual ordering
 - ► the automorphisms are the order-preserving permutations
 - isomorphisms between finite substructures can be extended to automorphisms that are piecewise-linear

Rado's countable random graph R

▶ if we choose a countable graph at random (edges independently with probability ¹/₂), then with probability 1 it is isomorphic to *R*

Some history

Origins

- The notion of homogeneous structure goes back to the fundamental work of Fraïssé (1953)
- Fraïssé proved a theorem which helps us determine if a countable structure is homogeneous, using the ideas of:
 - age the finite substructures they embed, and
 - amalgamation property the way that they can be glued together

Homogeneous structures are nice because they:

- have "lots of" symmetry;
- often have rich and interesting automorphism groups.

Common theme in model theory:

translation between "model theoretic terminology" and "permutation group theoretic terminology"

Common theme in model theory:

translation between "model theoretic terminology" and "permutation group theoretic terminology"

Example.

- (I) A structure M is \aleph_0 -categorical if all countable models of the first-order theory of M are isomorphic to M.
- (II) A permutation group on an infinite set Ω is called oligomorphic, if it has finitely many orbits of *n*-tuples, for all $n \ge 1$.

Common theme in model theory:

translation between "model theoretic terminology" and "permutation group theoretic terminology"

Example.

- (I) A structure M is \aleph_0 -categorical if all countable models of the first-order theory of M are isomorphic to M.
- (II) A permutation group on an infinite set Ω is called oligomorphic, if it has finitely many orbits of *n*-tuples, for all $n \ge 1$.

Theorem (Ryll-Nardzewski)

A countable structure M over a first-order language is \aleph_0 -categorical if and only if Aut(M) is oligomorphic.

Common theme in model theory:

translation between "model theoretic terminology" and "permutation group theoretic terminology"

Example.

- (I) A structure M is \aleph_0 -categorical if all countable models of the first-order theory of M are isomorphic to M.
- (II) A permutation group on an infinite set Ω is called oligomorphic, if it has finitely many orbits of *n*-tuples, for all $n \ge 1$.

Theorem (Ryll-Nardzewski)

A countable structure M over a first-order language is \aleph_0 -categorical if and only if Aut(M) is oligomorphic.

Homogeneous structures give examples of "nice" \aleph_0 -categorical structures (precisely those that have quantifier elimination).

Classification results

For certain families of relational structure, those members that are homogeneous have been completely determined.

Some classification results

	Finite	Countably infinite
Posets	(trivial)	Schmerl (1979)
Tournaments	Woodrow (1976)	Lachlan (1984)
Graphs	Gardiner (1976)	Lachlan & Woodrow (1980)
Digraphs	Lachlan (1982)	Cherlin (1998)

Outline

Motivation and background

Homogeneous structures Classification results

Weakening homogeneity

Set-homogeneous structures Enomoto's argument for finite set-homogeneous graphs Classifying the finite set-homogeneous digraphs

Infinite structures

Countable set-homogeneous graphs Countable set-homogeneous digraphs

Set-homogeneity

Definition

A relational structure M is set-homogeneous if whenever two finite substructures U and V are isomorphic, there is an automorphism $g \in Aut(M)$ such that Ug = V.

Set-homogeneity

Definition

A relational structure M is set-homogeneous if whenever two finite substructures U and V are isomorphic, there is an automorphism $g \in Aut(M)$ such that Ug = V.

- ▶ It is a concept originally due to Fraïssé and Pouzet.
- The permutation group-theoretic weakening

homogeneous \rightsquigarrow set-homogeneous

relates to the model-theoretic weakening

elimination of quantifiers \rightsquigarrow model complete.

Droste et al. (1994) - proved a set-homogeneous analogue of Fraïssé's theorem, where the amalgamation property is replaced by something called the twisted amalgamation property.

Set-homogeneity vs homogeneity

- ► Clearly if *M* is homogeneous then *M* is set-homogeneous.
- The converse is not true in general:

Example

Let $M = (\mathbb{Q}, R)$ where *R* is the ternary relation given by:

 $\forall x, y, z \in M, \ (x, y, z) \in R \Leftrightarrow x < y < z.$

► *M* is set-homogeneous

 any order-preserving bijection between between finite substructures is an isomorphism that extends to an automorphism

Set-homogeneity vs homogeneity

- ► Clearly if *M* is homogeneous then *M* is set-homogeneous.
- The converse is not true in general:

Example

Let $M = (\mathbb{Q}, R)$ where *R* is the ternary relation given by:

 $\forall x, y, z \in M, \ (x, y, z) \in R \Leftrightarrow x < y < z.$

► *M* is set-homogeneous

- any order-preserving bijection between between finite substructures is an isomorphism that extends to an automorphism
- ► *M* is not homogeneous
 - $(0,1) \mapsto (0,1)$ is an isomorphism between substructures
 - ▶ it does not extend to an automorphism since $(0, \frac{1}{2}, 1) \in R$ but $(1, x, 0) \notin R$ for any $x \in \mathbb{Q}$.

Set-homogeneity vs homogeneity

- ► Clearly if *M* is homogeneous then *M* is set-homogeneous.
- The converse is not true in general:

Example

Let $M = (\mathbb{Q}, R)$ where *R* is the ternary relation given by:

 $\forall x, y, z \in M, \ (x, y, z) \in R \Leftrightarrow x < y < z.$

► *M* is set-homogeneous

- any order-preserving bijection between between finite substructures is an isomorphism that extends to an automorphism
- ► *M* is not homogeneous
 - $(0,1) \mapsto (0,1)$ is an isomorphism between substructures
 - ▶ it does not extend to an automorphism since $(0, \frac{1}{2}, 1) \in R$ but $(1, x, 0) \notin R$ for any $x \in \mathbb{Q}$.

General question

How much stronger is homogeneity than set-homogeneity?

Set-homogeneous finite graphs

Ronse (1978)

...proved that for finite graphs homogeneity and set-homogeneity are equivalent.

- ► He did this by classifying the finite set-homogeneus graphs and then observing that they are all, in fact, homogeneous.
- This generalised an earlier result of Gardiner, classifying the finite homogeneous graphs.

Set-homogeneous finite graphs

Ronse (1978)

...proved that for finite graphs homogeneity and set-homogeneity are equivalent.

- ► He did this by classifying the finite set-homogeneus graphs and then observing that they are all, in fact, homogeneous.
- This generalised an earlier result of Gardiner, classifying the finite homogeneous graphs.

Enomoto (1981)

...gave a direct proof of the fact that for finite graphs set-homogeneous implies homogeneous.

- this avoids the need to classify the set-homogeneous graphs
- the set-homogeneous classification can then be read off from Gardiner's result

Some graph theoretic terminology and notation

Definition

 $\Gamma = (V\Gamma, \sim)$ - a graph

So \sim is a symmetric irreflexive binary relation on $V\Gamma$

Let v be a vertex of Γ. Then the neighbourhood Γ(v) of v is the set of all vertices adjacent to v. So

$$\Gamma(v) = \{ w \in V\Gamma : w \sim v \}$$

For $X \subseteq V\Gamma$ we define

 $\Gamma(X) = \{ w \in V\Gamma : w \sim x \ \forall x \in X \}$

Lemma (Enomoto's lemma)

Let Γ be a finite set-homogeneous graph and let U and V be induced subgraphs of Γ . If $U \cong V$ then $|\Gamma(U)| = |\Gamma(V)|$.

Proof.

□ > < □ > < Ξ > < Ξ > < Ξ > Ξ < つ Q (P) 14/37

Lemma (Enomoto's lemma)

Let Γ be a finite set-homogeneous graph and let U and V be induced subgraphs of Γ . If $U \cong V$ then $|\Gamma(U)| = |\Gamma(V)|$.

Proof.

• Let $g \in \operatorname{Aut}(\Gamma)$ such that Ug = V.

Lemma (Enomoto's lemma)

Let Γ be a finite set-homogeneous graph and let U and V be induced subgraphs of Γ . If $U \cong V$ then $|\Gamma(U)| = |\Gamma(V)|$.

14/37

Proof.

- Let $g \in \operatorname{Aut}(\Gamma)$ such that Ug = V.
- Then $(\Gamma(U))g = \Gamma(V)$.

Lemma (Enomoto's lemma)

Let Γ be a finite set-homogeneous graph and let U and V be induced subgraphs of Γ . If $U \cong V$ then $|\Gamma(U)| = |\Gamma(V)|$.

Proof.

- Let $g \in \operatorname{Aut}(\Gamma)$ such that Ug = V.
- Then $(\Gamma(U))g = \Gamma(V)$.
- In particular $|\Gamma(U)| = |\Gamma(V)|$.

 Γ - finite set-homogeneous graph X, Y - induced subgraphs

 $f: X \to Y$ an isomorphism

Claim: The isomorphism $f : X \to Y$ is either an automorphism, or extends to an isomorphism $f' : X' \to Y'$ where $X' \supseteq X$ and $Y' \supseteq Y$.

 Γ - finite set-homogeneous graph X, Y - induced subgraphs

 $f: X \to Y$ an isomorphism

Proof of claim.

• Choose $a \in \Gamma \setminus X$ with $|\Gamma(a) \cap X|$ as large as possible.

 Γ - finite set-homogeneous graph X, Y - induced subgraphs

 $f: X \to Y$ an isomorphism

- Choose $a \in \Gamma \setminus X$ with $|\Gamma(a) \cap X|$ as large as possible.
- Choose $d \in \Gamma \setminus Y$ with $|\Gamma(d) \cap Y|$ as large as possible.

 Γ - finite set-homogeneous graph X, Y - induced subgraphs

 $f: X \to Y$ an isomorphism

- Choose $a \in \Gamma \setminus X$ with $|\Gamma(a) \cap X|$ as large as possible.
- Choose $d \in \Gamma \setminus Y$ with $|\Gamma(d) \cap Y|$ as large as possible.
- Suppose $|\Gamma(a) \cap X| \ge |\Gamma(d) \cap Y|$ (the other possibility is dealt with dually using the isomorphism f^{-1})

 Γ - finite set-homogeneous graph X, Y - induced subgraphs

 $f: X \to Y$ an isomorphism

• Let
$$A = \Gamma(a) \cap X$$
 and define $B = f(A)$.

 Γ - finite set-homogeneous graph X, Y - induced subgraphs

 $f: X \to Y$ an isomorphism

- Let $A = \Gamma(a) \cap X$ and define B = f(A).
- $A \cong B$ & Γ is set-homogeneous so by the lemma $|\Gamma(A)| = |\Gamma(B)|$.

 Γ - finite set-homogeneous graph X, Y - induced subgraphs

 $f: X \to Y$ an isomorphism

- Let $A = \Gamma(a) \cap X$ and define B = f(A).
- $A \cong B$ & Γ is set-homogeneous so by the lemma $|\Gamma(A)| = |\Gamma(B)|$.
- $\blacktriangleright \ \Gamma(B) \cap Y = f(\Gamma(A) \cap X) \text{ so } |\Gamma(B) \cap Y| = |\Gamma(A) \cap X|.$

 Γ - finite set-homogeneous graph X, Y - induced subgraphs

 $f: X \to Y$ an isomorphism

Proof of claim.

- Let $A = \Gamma(a) \cap X$ and define B = f(A).
- ► $A \cong B$ & Γ is set-homogeneous so by the lemma $|\Gamma(A)| = |\Gamma(B)|$.
- $\blacktriangleright \ \Gamma(B) \cap Y = f(\Gamma(A) \cap X) \text{ so } |\Gamma(B) \cap Y| = |\Gamma(A) \cap X|.$

$$\blacktriangleright :: |\Gamma(B) \setminus Y| = |\Gamma(A) \setminus X)| \ge 1$$

15/37

 Γ - finite set-homogeneous graph X, Y - induced subgraphs

 $f: X \to Y$ an isomorphism

Proof of claim.

• Let $b \in \Gamma(B) \setminus Y$ and extend f to $f' : X \cup \{a\} \to Y \cup \{b\}$ by defining f'(a) = b.

 Γ - finite set-homogeneous graph X, Y - induced subgraphs

 $f: X \to Y$ an isomorphism

- Let $b \in \Gamma(B) \setminus Y$ and extend f to $f' : X \cup \{a\} \to Y \cup \{b\}$ by defining f'(a) = b.
- $\Gamma(b) \cap Y = B$ by maximality in original definition of *a*,

 Γ - finite set-homogeneous graph X, Y - induced subgraphs

 $f: X \to Y$ an isomorphism

- Let $b \in \Gamma(B) \setminus Y$ and extend f to $f' : X \cup \{a\} \to Y \cup \{b\}$ by defining f'(a) = b.
- ► $\Gamma(b) \cap Y = B$ by maximality in original definition of *a*,
- \therefore f' is an isomorphism.

Set-homogeneous digraphs

Question: Does Enomoto's argument apply to other kinds of structure?

Set-homogeneous digraphs

Question: Does Enomoto's argument apply to other kinds of structure?

Definition (Digraphs)

A digraph D consists of a set VD of vertices together with an irreflexive antisymmetric binary relation \rightarrow on VD.

Definition (in- and out-neighbours)

A vertex $v \in VD$ has a set of in-neighbours and a set of out-neighbours

$$D^+(v) = \{ w \in VD : v \to w \}, \quad D^-(v) = \{ w \in VD : w \to v \}.$$

A vertex with red in-neighbours and blue out-neighbours

D - finite set-homogeneous digraph X, Y - induced subdigraphs $f: X \to Y$ an isomorphism

- ► Follow the same steps but using out-neighbours instead of neighbours.
- Everything works, except the very last step.

D - finite set-homogeneous digraph X, Y - induced subdigraphs $f: X \to Y$ an isomorphism

- ► Follow the same steps but using out-neighbours instead of neighbours.
- Everything works, except the very last step.
- We do not know how b is related to the vertices in the set $Y \setminus B$. So f' may not be an isomorphism.

The key point:

▶ For graphs, given $u, v \in V\Gamma$ there are 2 possibilities

 $u \sim v$ or $u \parallel v$ (meaning that u & v are unrelated).

▶ For digraphs, given $u, v \in VD$ there are 3 possibilities

 $u \to v$ or $v \to u$ or $u \parallel v$.

The key point:

► For graphs, given $u, v \in V\Gamma$ there are 2 possibilities

 $u \sim v$ or $u \parallel v$ (meaning that u & v are unrelated).

▶ For digraphs, given $u, v \in VD$ there are 3 possibilities

 $u \to v$ or $v \to u$ or $u \parallel v$.

However, the argument does work for tournaments:

Definition

A tournament is a digraph where for any pair of vertices u, v either $u \rightarrow v$ or $v \rightarrow u$.

Corollary

Let T be a finite tournament. Then T is homogeneous if and only if T is set-homogeneous.

A non-homogeneous example

Example

Let D_n denote the digraph with vertex set $\{0, \ldots, n-1\}$ and just with arcs $i \to i+1 \pmod{n}$.

The digraph D_5 is set-homogeneous but is not homogeneous.

► (a, c) → (a, d) gives an isomorphism between induced subdigraphs that does not extend to an automorphism

• However, there is an automorphism sending $\{a, c\}$ to $\{a, d\}$.

Finite set-homogeneous digraphs

Question

How much bigger is the class of set-homogeneous digraphs than the class of homogeneous digraphs?

Finite set-homogeneous digraphs

Question

How much bigger is the class of set-homogeneous digraphs than the class of homogeneous digraphs?

Theorem (RG, Macpherson, Praeger (2007))

Let D be a finite set-homogeneous digraph. Then either D is homogeneous or it is isomorphic to D_5 .

Proof.

- Carry out the classification of finite set-homogeneous digraphs.
- By inspection note that D_5 is the only non-homogeneous example.

Symmetric-digraphs (s-digraphs)

A common generalisation of graphs and digraphs

Definition (s-digraph)

- An s-digraph is the same as a digraph except that we allow pairs of vertices to have arcs in both directions.
- So for any pair of vertices *u*, *v* exactly one of the following holds:

 $u \to v, \quad v \to u, \quad u \leftrightarrow v, \quad u \parallel v.$

Symmetric-digraphs (s-digraphs)

A common generalisation of graphs and digraphs

Definition (s-digraph)

- An s-digraph is the same as a digraph except that we allow pairs of vertices to have arcs in both directions.
- So for any pair of vertices *u*, *v* exactly one of the following holds:

 $u \to v, \qquad v \to u, \qquad u \leftrightarrow v, \qquad u \parallel v.$

- Formally we can think of an s-digraph as a structure M with two binary relations \rightarrow and \sim where
 - \sim is irreflexive and symmetric (and corresponds to \leftrightarrow above)
 - \blacktriangleright \rightarrow is irreflexive and antisymmetric
 - ▶ \sim and \rightarrow are disjoint
- A graph is an s-digraph (where there are no \rightarrow -related vertices)
- ► A digraph is an s-digraph (where there are no ~-related vertices)

Classifying the finite homogeneous s-digraphs

Lachlan (1982) classified the finite homogeneous s-digraphs

To state his result we need the notions of

- complement
- compositional product

Finite homogeneous s-digraphs

Definition (Complement)

If *M* is an s-digraph, then \overline{M} , the complement, is the s-digraph with the same vertex set, such that $u \sim v$ in \overline{M} if and only if they are unrelated in *M*, and $u \rightarrow v$ in \overline{M} if and only if $v \rightarrow u$ in *M*.

23/37

Finite homogeneous s-digraphs

Definition (Composition)

If U and V are s-digraphs, the compositional product U[V] denotes the s-digraph which is

"|U| copies of V"

```
Vertex set = U \times V
```

 \rightarrow relations are of form $(u, v_1) \rightarrow (u, v_2)$ where $v_1 \rightarrow v_2$ in *V*, or of form $(u_1, v_1) \rightarrow (u_2, v_2)$ where $u_1 \rightarrow u_2$ in *U*,

Similarly for \sim .

Some finite homogeneous s-digraphs

Sporadic examples

- \mathcal{L} finite homogeneous graphs, \mathcal{A} finite homogeneous digraphs,
- $\ensuremath{\mathcal{S}}$ finite homogeneous s-digraphs

Some finite homogeneous s-digraphs

Sporadic examples

- $\mathcal L$ finite homogeneous graphs, $\mathcal A$ finite homogeneous digraphs,
- $\ensuremath{\mathcal{S}}$ finite homogeneous s-digraphs

 $H_0 \in \mathcal{A}$

 $H_1 \in \mathcal{S}$

Some finite homogeneous s-digraphs

Sporadic examples

To complete the picture...

In H_2 each vertex v has a unique mate v' to which it is joined by an undirected edge.

Now if $v \to w$ then $w \to v'$ where v' is the mate of v.

Similarly, if $w \to v$ then $v' \to w$.

Lachlan's classification

 ${\mathcal L}$ - finite homogeneous graphs, ${\mathcal A}$ - finite homogeneous digraphs,

 $\ensuremath{\mathcal{S}}$ - finite homogeneous s-digraphs

Theorem (Lachlan (1982))

Let M be a finite s-digraph. Then

Gardiner

(i) $M \in \mathcal{L} \Leftrightarrow M$ or \overline{M} is one of: C_5 , $K_3 \times K_3$, $K_m[\overline{K}_n]$ (for $1 \leq m, n \in \mathbb{N}$);

Lachlan's classification

 ${\mathcal L}$ - finite homogeneous graphs, ${\mathcal A}$ - finite homogeneous digraphs,

 $\ensuremath{\mathcal{S}}$ - finite homogeneous s-digraphs

Theorem (Lachlan (1982))

Let M be a finite s-digraph. Then

Gardiner

(i) $M \in \mathcal{L} \Leftrightarrow M$ or \overline{M} is one of: C_5 , $K_3 \times K_3$, $K_m[\overline{K}_n]$ (for $1 \le m, n \in \mathbb{N}$);

Lachlan

(ii) $M \in \mathcal{A} \Leftrightarrow M$ is one of: D_3 , D_4 , H_0 , \overline{K}_n , $\overline{K}_n[D_3]$, or $D_3[\overline{K}_n]$, for some $n \in \mathbb{N}$ with $1 \leq n$;

Lachlan's classification

 ${\mathcal L}$ - finite homogeneous graphs, ${\mathcal A}$ - finite homogeneous digraphs,

 $\ensuremath{\mathcal{S}}$ - finite homogeneous s-digraphs

Theorem (Lachlan (1982))

Let M be a finite s-digraph. Then

Gardiner

(i) $M \in \mathcal{L} \Leftrightarrow M \text{ or } \overline{M} \text{ is one of: } C_5, K_3 \times K_3, K_m[\overline{K}_n] \text{ (for } 1 \leq m, n \in \mathbb{N});$

Lachlan

(ii) $M \in \mathcal{A} \Leftrightarrow M$ is one of: D_3 , D_4 , H_0 , \overline{K}_n , $\overline{K}_n[D_3]$, or $D_3[\overline{K}_n]$, for some $n \in \mathbb{N}$ with $1 \leq n$;

(iii) $M \in S \Leftrightarrow M$ or \overline{M} is isomorphic to an s-digraph of one of the following forms. $K_n[A], A[K_n], L, D_3[L], L[D_3], H_1, H_2$, where $n \in \mathbb{N}$ with $1 \leq n, A \in A$ and $L \in \mathcal{L}$.

Set-homogeneous s-digraphs

Theorem (RG, Macpherson, Praeger (2007))

The finite s-digraphs that are set-homogeneous but not homogeneous are:

Infinite families (with $n \in \mathbb{N}$)

(i) $K_n[D_5]$ or $D_5[K_n]$ (ii) J_n

Set-homogeneous s-digraphs

Theorem (RG, Macpherson, Praeger (2007))

The finite s-digraphs that are set-homogeneous but not homogeneous are:

Infinite families (with $n \in \mathbb{N}$)

(i) $K_n[D_5]$ or $D_5[K_n]$ (ii) J_n

Set-homogeneous s-digraphs

Theorem (RG, Macpherson, Praeger (2007))

The finite s-digraphs that are set-homogeneous but not homogeneous are:

Infinite families (with $n \in \mathbb{N}$)

29/37

Outline

Motivation and background

Homogeneous structures Classification results

Weakening homogeneity

Set-homogeneous structures Enomoto's argument for finite set-homogeneous graphs Classifying the finite set-homogeneous digraphs

Infinite structures

Countable set-homogeneous graphs Countable set-homogeneous digraphs

Circular structures

Construction discovered independently by Cameron and Macpherson.

Definition (the graph R(3))

• its vertex set is any countable dense subset of the unit circle such that no two points make an angle of $2\pi/3$ at the centre of the circle.

Circular structures

Construction discovered independently by Cameron and Macpherson.

Definition (the graph R(3))

- its vertex set is any countable dense subset of the unit circle such that no two points make an angle of $2\pi/3$ at the centre of the circle.
 - To construct such a set begin with the set of all complex roots of unity
 - partition into sets of size 3 with two vertices in the same part iff the angle they make at the centre is a multiple of $2\pi/3$
 - choose representatives from these equivalence classes at random

Circular structures

Construction discovered independently by Cameron and Macpherson.

Definition (the graph R(3))

- its vertex set is any countable dense subset of the unit circle such that no two points make an angle of $2\pi/3$ at the centre of the circle.
 - To construct such a set begin with the set of all complex roots of unity
 - ► partition into sets of size 3 with two vertices in the same part iff the angle they make at the centre is a multiple of $2\pi/3$
 - choose representatives from these equivalence classes at random
- two vertices are adjacent iff the acute angle they make with the centre of the circle is less than $2\pi/3$
- ▶ i.e. they are adjacent when close enough together

Fact. Two graphs satisfying these properties are isomorphic.

Countable set-homogeneous graphs

The neighbourhood of a vertex in the graph R(3)

Theorem (Droste, Giraudet, Macpherson, Sauer (1994))

The graph R(3) is set-homogeneous but not 3-homogeneous. Moreover, any set-homogeneous but not \leq 3-homogeneous graph is isomorphic to R(3) or its complement.

T(4): a countable set-homogeneous digraph

Definition

Let T(4) be the digraph obtained by distributing countably many points densely around the unit circle

- no two making an angle of π or $\pi/2$ at the centre
- such that $x \to y$ if and only if $\pi/2 < \arg(x/y) < \pi$.

By a back-and-forth argument, this construction for T(4) determines unique digraph.

The neighbourhood of a vertex in the graph T(4)

Properties of T(4)

Lemma

The digraph T(4) is set-homogeneous but not 2-homogeneous.

proof.

- set-homogeneity: shown by "expanding" T(4) to a homogeneous structure
- not 2-homogeneous: there exist independent pairs that cannot be swapped by any automorphism
- e.g. if $x, y \in T(4)$ with $0 < \arg(x/y) < \pi/2$, then

•
$$\exists z(z \to x \land y \to z)$$
 but

$$\neg \exists z (z \to y \land x \to z).$$

R_n ($n \ge 2$): a family of set-homogeneous digraphs Definition

- Let $2 \le n \le \aleph_0$
- ▶ let $\{Q_i : i < n\}$ be a partition of \mathbb{Q} into *n* dense codense sets.

Define a digraph R_n with domain \mathbb{Q} , putting $a \to b$ if and only if a < b and there is no i < n such that $a, b \in Q_i$.

By a back-and-forth argument, this construction for R_n determines unique digraph.

Properties of R_n

Lemma

The digraphs R_n (for $n \ge 2$) are set-homogeneous but not 2-homogeneous.

proof.

- set-homogeneity: shown by "expanding" to a homogeneous structure
- ▶ not 2-homogeneous: for if $x, y \in Q_1$ with x < y then there is *z* with $x \to z \to y$ but no *z* with $y \to z \to x$.
- \therefore (*x*, *ymapsto*(*y*, *x*)) does not extend to an automorphism.

A partial classification

Theorem (RG, Macpherson, Praeger (2007))

Let D be a countably infinite set-homogeneous digraph which is not 2-homogeneous. Then D is isomorphic to T(4) or to R_n for some $n \ge 2$.

Open problems

- Is there a countably infinite tournament that is set-homogeneous but not homogeneous?
- Classify the countably infinite set-homogeneous graphs (and digraphs).

Relating to the first of these questions, we know:

Proposition (RG, Macpherson, Praeger (2007))

Let T be a set-homogeneous tournament. Then T is 4-homogeneous.