One-relator groups, monoids and inverse monoids

Robert D. Gray¹

University of Sydney Algebra Seminar May 2023

University of East Anglia

¹Research supported by EPSRC Fellowship EP/V032003/1 'Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups'.

One-relator monoids

$$
Mon\langle A \mid R \rangle = Mon\langle \underbrace{a_1, \ldots, a_n}_{\text{letters } \text{/ generators}} \mid \underbrace{u_1 = v_1, \ldots, u_m = v_m}_{\text{words } \text{/ defining relations}}
$$

► Defines the monoid $M = A^*/ \sim$ where \sim is the equivalence relation with $\alpha \sim \beta$ if α can be transformed into β the other by applying relations *R*.

Longstanding open problem

Is the word problem decidable for one-relator monoids Mon $\langle A | u = v \rangle$?

One-relator monoids

$$
Mon\langle A \mid R \rangle = Mon\langle \underbrace{a_1, \ldots, a_n}_{\text{letters } \text{/ generators}} \mid \underbrace{u_1 = v_1, \ldots, u_m = v_m}_{\text{words } \text{/ defining relations}}
$$

► Defines the monoid $M = A^*/ \sim$ where \sim is the equivalence relation with $\alpha \sim \beta$ if α can be transformed into β the other by applying relations *R*.

Longstanding open problem

Is the word problem decidable for one-relator monoids $\text{Mon}\langle A | u = v \rangle$?

Theorem (Adian & Oganesian, 1978+1987)

The word problem for a given Mon $\langle A | u = v \rangle$ can be reduced to the word problem for a one-relator monoid of the form

$$
Mon\langle a,b \mid bUa = aVa \rangle \quad \text{or} \quad Mon\langle a,b \mid bUa = a \rangle.
$$

▸ Both of these cases remain open!

Reduction to inverse monoids

▸ Magnus 1932: One-relator groups have decidable word problem.

The monoids $\text{Mon}\langle a, b \mid bUa = aVa \rangle$ and $\text{Mon}\langle a, b \mid bUa = a \rangle$ are not group embeddable. However Ivanov, Margolis, Meakin (2001) proved that

$$
\text{Mon}\langle a, b \mid bUa = aVa \rangle \hookrightarrow \text{Inv}\langle a, b \mid (aVa)^{-1}bUa = 1 \rangle \quad \&
$$
\n
$$
\text{Mon}\langle a, b \mid bUa = a \rangle \hookrightarrow \text{Inv}\langle a, b \mid a^{-1}bUa = 1 \rangle.
$$

Reduction to inverse monoids

▸ Magnus 1932: One-relator groups have decidable word problem.

The monoids $\text{Mon}\langle a, b \mid bUa = aVa \rangle$ and $\text{Mon}\langle a, b \mid bUa = a \rangle$ are not group embeddable. However Ivanov, Margolis, Meakin (2001) proved that

$$
\text{Mon}\langle a, b \mid bUa = aVa \rangle \hookrightarrow \text{Inv}\langle a, b \mid (aVa)^{-1}bUa = 1 \rangle \quad \&
$$
\n
$$
\text{Mon}\langle a, b \mid bUa = a \rangle \hookrightarrow \text{Inv}\langle a, b \mid a^{-1}bUa = 1 \rangle.
$$

Theorem (Ivanov, Margolis, Meakin (2001))

If the word problem is decidable for all inverse monoids of the form Inv $\langle A | w = 1 \rangle$ then the word problem is also decidable for every one-relator monoid Mon $\langle A | u = v \rangle$.

Word problem for $Inv(A | w = 1)$ decidable in many cases:

- ▸ Idempotent word [Birget, Margolis, Meakin, 1993, 1994]
- ▸ *w*-strictly positive [Ivanov, Margolis, Meakin, 2001]
- ▸ Adjan or Baumslag-Solitar type [Margolis, Meakin, Šunik, 2005] ´
- ▸ Sparse word [Hermiller, Lindblad, Meakin, 2010]

Word problem for one-relator inverse monoids

Theorem (RDG (2020))

There is a one-relator inverse monoid Inv $\langle A | w = 1 \rangle$ with undecidable word problem.

Word problem for one-relator inverse monoids

Theorem (RDG (2020))

There is a one-relator inverse monoid Inv $\langle A | w = 1 \rangle$ with undecidable word problem.

Ingredients for the proof:

- ▸ Submonoid membership problem for one relator groups.
- ▸ Right-angled Artin groups (RAAGs).
- ▸ Right units of inverse monoids and Stephen's procedure for constructing Schützenberger graphs.
- ▸ Properties of *E*-unitary inverse monoids.

Inverse monoids

An inverse monoid is a monoid *M* such that for every $x \in M$ there is a unique $x^{-1} \in M$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$.

Example: I_X = monoid of all partial bijections $X \rightarrow X$

Inverse monoid presentations

An inverse monoid is a monoid *M* such that for every $x \in M$ there is a unique $x^{-1} \in M$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$.

For all $x, y \in M$ we have

$$
x = xx^{-1}x, \ (x^{-1})^{-1} = x, \ (xy)^{-1} = y^{-1}x^{-1}, \ xx^{-1}yy^{-1} = yy^{-1}xx^{-1} \tag{\dagger}
$$

$$
\text{Inv}\langle A \mid u_i = v_i \ (i \in I) \rangle = \text{Mon}\langle A \cup A^{-1} \mid u_i = v_i \ (i \in I) \cup (\dagger) \rangle
$$

where $u_i, v_i \in (A \cup A^{-1})^*$ and x, y range over all words from $(A \cup A^{-1})^*$. Free inverse monoid $FIM(A) = Inv\langle A | \rangle$

Munn (1974) Elements of FIM(*A*) can be represented using Munn trees. e.g. in FIM (a, b) we have $u = w$ where

 $u = aa^{-1}bb^{-1}ba^{-1}abb^{-1}$ $w = bbb^{-1}a^{-1}ab^{-1}aa^{-1}b$

Proof strategy

$$
M = \text{Inv}\langle A|r = 1\rangle \longrightarrow G = G_{p}\langle A|r = 1\rangle
$$
\n
$$
U_{R} = \{n \in M : nm^{-1} = 1\}
$$
\n
$$
T
$$

If M has decidable word problem
\n
$$
\Rightarrow
$$
 membership problem for $U_R \leq M$ is decidable
\nsince for $w \in (A \cup A')^*$
\n $\omega \in U_R \iff ww^{-1} = \pm$
\n(sometric)
\n $w \rightarrow$ membership problem for $N \leq G$ is decidable

Right-angled Artin groups

Definition

The right-angled Artin group $A(\Gamma)$ associated with the graph Γ is

 $Gp\langle V\Gamma | uv = vu$ if and only if $\{u, v\} \in E\Gamma \rangle$.

Example

Submonoid membership problem

G - a finitely generated group with a finite group generating set *A*. $\pi : (A \cup A^{-1})^* \to G$ – the canonical monoid homomorphism. *T* – a finitely generated submonoid of *G*.

The membership problem for *T* within *G* is decidable if there is an algorithm which solves the following decision problem:

```
INPUT: A word w \in (A \cup A^{-1})^*.
QUESTION: \pi(w) \in T?
```
Theorem (Lohrey & Steinberg (2008))

 $A(\Gamma)$ has decidable submonoid membership problem $\Leftrightarrow \Gamma$ does not embed a square C_4 or a path P_4 with four vertices as an induced subgraph.

Let P_4 be the graph

 $A(P_4) = Gp\{a, b, c, d \mid ab = ba, bc = cb, cd = dc\}.$

 Δ_1 - subgraph induced by $\{a, b, c\}, \Delta_2$ subgraph induced by $\{b, c, d\},$ $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b$, $b \mapsto c$, and $c \mapsto d$.

Let P_4 be the graph

 $A(P_4) = Gp(a, b, c, d | ab = ba, bc = cb, cd = dc).$

 Δ_1 - subgraph induced by $\{a, b, c\}, \Delta_2$ subgraph induced by $\{b, c, d\},$ $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b$, $b \mapsto c$, and $c \mapsto d$. Then the HNN-extension $A(P_4, \psi)$ of $A(P_4)$ with respect to ψ is

$$
A(P_4, \psi)
$$

= Gp(a, b, c, d, t | ab = ba, bc = cb, cd = dc, tat⁻¹ = b, tbt⁻¹ = c, tct⁻¹ = d

Let P_4 be the graph

 $A(P_4) = Gp(a, b, c, d | ab = ba, bc = cb, cd = dc).$

 Δ_1 - subgraph induced by $\{a, b, c\}, \Delta_2$ subgraph induced by $\{b, c, d\},$ $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b$, $b \mapsto c$, and $c \mapsto d$. Then the HNN-extension $A(P_4, \psi)$ of $A(P_4)$ with respect to ψ is

$$
A(P_4, \psi)
$$

= Gp $(a, b, c, d, t | ab = ba, bc = cb, cd = dc, tat^{-1} = b, tbt^{-1} = c, tct^{-1} = d)$
= Gp $(a, t | a(tat^{-1}) = (tat^{-1})a, (tat^{-1})(t^2at^{-2}) = (t^2at^{-2})(tat^{-1}),$
 $(t^2at^{-2})(t^3at^{-3}) = (t^3at^{-3})(t^2at^{-2})$.

Let P_4 be the graph

 $A(P_4) = Gp(a, b, c, d | ab = ba, bc = cb, cd = dc).$

 Δ_1 - subgraph induced by $\{a, b, c\}, \Delta_2$ subgraph induced by $\{b, c, d\},$ $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b$, $b \mapsto c$, and $c \mapsto d$. Then the HNN-extension $A(P_4, \psi)$ of $A(P_4)$ with respect to ψ is

$$
A(P_4, \psi)
$$

= Gp $(a, b, c, d, t | ab = ba, bc = cb, cd = dc, tat^{-1} = b, tbt^{-1} = c, tct^{-1} = d)$
= Gp $(a, t | a(tat^{-1}) = (tat^{-1})a, (tat^{-1})(t^2at^{-2}) = (t^2at^{-2})(tat^{-1}),$
 $(t^2at^{-2})(t^3at^{-3}) = (t^3at^{-3})(t^2at^{-2})$.

$$
= \text{Gp}(a, t | \text{atat}^{-1}a^{-1}ta^{-1}t^{-1} = 1).
$$

Let P_4 be the graph

 $A(P_4) = Gp(a, b, c, d | ab = ba, bc = cb, cd = dc).$

 Δ_1 - subgraph induced by $\{a, b, c\}, \Delta_2$ subgraph induced by $\{b, c, d\},$ $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b$, $b \mapsto c$, and $c \mapsto d$. Then the HNN-extension $A(P_4, \psi)$ of $A(P_4)$ with respect to ψ is

$$
A(P_4, \psi)
$$

= Gp $(a, b, c, d, t | ab = ba, bc = cb, cd = dc, tat^{-1} = b, tbt^{-1} = c, tct^{-1} = d)$
= Gp $(a, t | a(tat^{-1}) = (tat^{-1})a, (tat^{-1})(t^2at^{-2}) = (t^2at^{-2})(tat^{-1}),$
 $(t^2at^{-2})(t^3at^{-3}) = (t^3at^{-3})(t^2at^{-2})$ $)$.
= Gp $(a, t | atat^{-1}a^{-1}ta^{-1}t^{-1} = 1)$.

Conclusion

 $A(P_4)$ embeds into the one-relator group

$$
A(P_4, \psi) = \text{Gp}\langle a, t | \atop a \tan^{-1} a^{-1} t a^{-1} t^{-1} = 1 \rangle.
$$

Right-angled Artin subgroups of one-relator groups

Theorem (RDG (2020))

There is a one-relator group $G = \text{Gp}(A \mid r = 1)$ with a fixed finitely generated submonoid $N \leq G$ such that the membership problem for N within G is undecidable.

Proof:

- \triangleright Lohrey & Steinberg (2008) proved that $A(P_4)$ contains a finitely generated submonoid *T* in which membership is undecidable.
- \triangleright Let *G* = Gp(*A* | *r* = 1) be a one-relator group embedding $θ : A(P_4) \rightarrow G$.
- \triangleright Then $N = \theta(T)$ is a finitely generated submonoid of G in which membership is undecidable.

Right-angled Artin subgroups of one-relator groups

Theorem (RDG (2020))

There is a one-relator group $G = \text{Gp}(A \mid r = 1)$ with a fixed finitely generated submonoid $N \leq G$ such that the membership problem for N within G is undecidable.

Proof:

- \triangleright Lohrey & Steinberg (2008) proved that $A(P_4)$ contains a finitely generated submonoid *T* in which membership is undecidable.
- \triangleright Let *G* = Gp(*A* | *r* = 1) be a one-relator group embedding $θ : A(P_4) \rightarrow G$.
- \triangleright Then $N = \theta(T)$ is a finitely generated submonoid of G in which membership is undecidable.

Corollary

 $A(\Gamma)$ embeds into some one-relator group $\Longleftrightarrow \Gamma$ is a finite forest.

(←) Uses Koberda (2013) showing if *F* is a finite forest $A(F)$ → $A(P_4)$. (\Rightarrow) Uses a result of Louder and Wilton (2017) on Betti numbers of subgroups of torsion-free one-relator groups.

Proof strategy

$$
M = \text{Inv}\langle A|r = 1\rangle \longrightarrow G = G_{p}\langle A|r = 1\rangle
$$
\n
$$
U_{R} = \{n \in M : nm^{-1} = 1\}
$$
\n
$$
T
$$

If M has decidable word problem
\n
$$
\Rightarrow
$$
 membership problem for $U_R \leq M$ is decidable
\nsince for $w \in (A \cup A')^*$
\n $\omega \in U_R \iff ww^{-1} = \pm$
\n(sowetima)
\n \sim ... \Rightarrow membership problem for N \le G is decidable

Schützenberger graphs

Let $M = \text{Inv}(A \mid r = 1)$ and $U_R = \{m \in M : mm^{-1} = 1\}$ the right units of M.

Aim: Construct an $M = Inv(A | r = 1)$ such that membership in $U_R \leq M$ is undecidable i.e. it is undecidable whether $uu^{-1} = 1$ for a given *u* ∈ $(A \cup A^{-1})^*$. Then *M* will have undecidable word problem.

Schützenberger graphs

Let $M = \text{Inv}(A \mid r = 1)$ and $U_R = \{m \in M : mm^{-1} = 1\}$ the right units of M.

Aim: Construct an $M = Inv(A | r = 1)$ such that membership in $U_R \leq M$ is undecidable i.e. it is undecidable whether $uu^{-1} = 1$ for a given *u* ∈ $(A \cup A^{-1})^*$. Then *M* will have undecidable word problem.

Definition

The Schützenberger graph *S* $\Gamma(1)$ of *M* = Inv $\langle A | r = 1 \rangle$ is the subgraph of the Cayley graph of *M* induced on the set of right units of *M*.

Stephen's procedure

The Schützenberger graph *S*Γ(1) can be obtained as the limit of a sequence of labelled digraphs obtained by an iterative construction given by successively applying operations called expansions and Stallings foldings.

Example - Stephen's Procedure

 $\text{Inv}\langle a,b \mid aba^{-1}b^{-1} = 1 \rangle$

Stephen's procedure

Expansions: Attach a simple closed path labelled by *r* at a vertex (if one does not already exist).

Stallings foldings: Identify two edges with the same label and the same initial or terminal vertex.

This process may not stop. Stephen shows that the

- \triangleright process is confluent &
- ▸ limits in an appropriate sense to *S*Γ(1).

Example - Stephen's Procedure

 $\text{Inv}\langle a,b \mid aba^{-1}b^{-1} = 1 \rangle$

Stephen's procedure

Expansions: Attach a simple closed path labelled by *r* at a vertex (if one does not already exist).

Stallings foldings: Identify two edges with the same label and the same initial or terminal vertex.

This process may not stop. Stephen shows that the

- \triangleright process is confluent &
- ▸ limits in an appropriate sense to *S*Γ(1).

Right unit membership

 $\text{Inv}\langle a,b \mid aba^{-1}b^{-1} = 1 \rangle$

 $w \in (A \cup A^{-1})^*$ is a right unit ⇔ *w* can be read from the origin in $ST(1)$.

Examples *aaba*^{−1}a^{−1} is a right unit.

Note: This word cannot be read in the previous unfolded graph.

 $bab^{-1}b^{-1}a$ is not a right unit.

For any $r, w_1, \ldots, w_k \in (A \cup A^{-1})^*$, with $A = \{a_1, \ldots, a_n\}$, set *e* equal to $a_1a_1^{-1} \ldots a_na_n^{-1}(tw_1t^{-1})(tw_1^{-1}t^{-1})(tw_2t^{-1})(tw_2^{-1}t^{-1}) \ldots (tw_kt^{-1})(tw_k^{-1}t^{-1})a_n^{-1}a_n \ldots a_1^{-1}a_1$ where *t* is a new symbol.

Key claim

Let *T* be the submonoid of *G* = Gp $\{A \mid r = 1\}$ generated by $\{w_1, w_2, \ldots, w_k\}$, and let $M = Inv(A, t | er = 1)$. Then for all $u \in (A \cup A^{-1})^*$ we have

 $tut^{-1} \in U_R$ in $M \Longleftrightarrow u \in T$ in G .

For any $r, w_1, \ldots, w_k \in (A \cup A^{-1})^*$, with $A = \{a_1, \ldots, a_n\}$, set *e* equal to $a_1a_1^{-1} \ldots a_na_n^{-1}(tw_1t^{-1})(tw_1^{-1}t^{-1})(tw_2t^{-1})(tw_2^{-1}t^{-1}) \ldots (tw_kt^{-1})(tw_k^{-1}t^{-1})a_n^{-1}a_n \ldots a_1^{-1}a_1$ where *t* is a new symbol.

Key claim

Let *T* be the submonoid of *G* = Gp $\langle A | r = 1 \rangle$ generated by $\{w_1, w_2, \ldots, w_k\}$, and let $M = Inv(A, t | er = 1)$. Then for all $u \in (A \cup A^{-1})^*$ we have

 $tut^{-1} \in U_R$ in $M \Longleftrightarrow u \in T$ in G .

For any $r, w_1, \ldots, w_k \in (A \cup A^{-1})^*$, with $A = \{a_1, \ldots, a_n\}$, set *e* equal to $a_1a_1^{-1} \ldots a_na_n^{-1}(tw_1t^{-1})(tw_1^{-1}t^{-1})(tw_2t^{-1})(tw_2^{-1}t^{-1}) \ldots (tw_kt^{-1})(tw_k^{-1}t^{-1})a_n^{-1}a_n \ldots a_1^{-1}a_1$ where *t* is a new symbol.

Key claim

Let *T* be the submonoid of $G = \text{Gp}(A \mid r = 1)$ generated by $\{w_1, w_2, \ldots, w_k\}$, and let $M = Inv(A, t | er = 1)$. Then for all $u \in (A \cup A^{-1})^*$ we have

$$
tut^{-1} \in U_R \text{ in } M \Longleftrightarrow u \in T \text{ in } G.
$$

Theorem (RDG 2020)

If $M = Inv(A, t | er = 1)$ has decidable word problem then the membership problem for *T* within $G = \text{Gp}(A \mid r = 1)$ is decidable.

For any $r, w_1, \ldots, w_k \in (A \cup A^{-1})^*$, with $A = \{a_1, \ldots, a_n\}$, set *e* equal to $a_1a_1^{-1} \ldots a_na_n^{-1}(tw_1t^{-1})(tw_1^{-1}t^{-1})(tw_2t^{-1})(tw_2^{-1}t^{-1}) \ldots (tw_kt^{-1})(tw_k^{-1}t^{-1})a_n^{-1}a_n \ldots a_1^{-1}a_1$ where *t* is a new symbol.

Key claim

Let *T* be the submonoid of $G = \text{Gp}(A \mid r = 1)$ generated by $\{w_1, w_2, \ldots, w_k\}$, and let $M = Inv(A, t | er = 1)$. Then for all $u \in (A \cup A^{-1})^*$ we have

$$
tut^{-1} \in U_R \text{ in } M \Longleftrightarrow u \in T \text{ in } G.
$$

Theorem (RDG 2020)

If $M = Inv(A, t | er = 1)$ has decidable word problem then the membership problem for *T* within $G = \text{Gp}(A \mid r = 1)$ is decidable.

Theorem (RDG (2020))

There is a one-relator inverse monoid Inv $\langle A | w = 1 \rangle$ with undecidable word problem.

The word problem and groups of units

Key question

For which words $w \in (A \cup A^{-1})^*$ does $\text{Inv}(A \mid w = 1)$ have decidable word problem? In particular is the word problem always decidable when *w* is (a) reduced or (b) cyclically reduced?

Note: A positive answer to (a) would imply the word problem is also decidable for every one-relator monoid Mon $\langle A | u = v \rangle$.

The word problem and groups of units

Key question

For which words $w \in (A \cup A^{-1})^*$ does $\text{Inv}(A \mid w = 1)$ have decidable word problem? In particular is the word problem always decidable when *w* is (a) reduced or (b) cyclically reduced?

Note: A positive answer to (a) would imply the word problem is also decidable for every one-relator monoid Mon $\langle A | u = v \rangle$.

Theorem (Adjan (1966))

The group of units *G* of a one-relator monoid $M = \text{Mon}(A \mid r = 1)$ is a one-relator group. Furthermore, *M* has decidable word problem.

Problem: What are the groups of units of inverse monoids $\text{Inv}(A \mid r = 1)$?

Example - group of units

Theorem (Stephen (1990)) The group of units of $M = Inv(A | r = 1)$ is isomorphic to the group Aut(*S*Γ(1)) of label-preserving automorphisms of the Schützenberger graph *S*Γ(1).

 $Inv(a, b, x | xabx = 1)$

Example - group of units

Theorem (Stephen (1990)) The group of units of $M = Inv(A | r = 1)$ is isomorphic to the group Aut(*S*Γ(1)) of label-preserving automorphisms of the Schützenberger graph *S*Γ(1).

 $Inv(a, b, x | xabx = 1)$

The group of units is

 $Aut(S\Gamma(1)) \cong \mathbb{Z}$

the infinite cyclic group.

Theorem (RDG & Ruškuc (2021))

There exists a one-relator inverse monoid $M = Inv(A | r = 1)$ whose group of units *G* is not a one-relator group.

Question: Is the group of units of Inv $\langle A | r = 1 \rangle$ always finitely presented?²

²It is known to be finitely generated.

Theorem (RDG & Ruškuc (2021))

There exists a one-relator inverse monoid $M = Inv(A | r = 1)$ whose group of units *G* is not a one-relator group.

Question: Is the group of units of Inv $\langle A | r = 1 \rangle$ always finitely presented?²

Definition. A finitely presented group *G* is said to be coherent if every finitely generated subgroup of *G* is finitely presented.

Open problem (Baumslag (1973))

Is every one-relator group coherent?

Theorem (RDG & Ruškuc (2021))

If all one-relator inverse monoids $\text{Inv}(A \mid r = 1)$ have finitely presented groups of units then all one-relator groups are coherent.

²It is known to be finitely generated.

Theorem (RDG & Ruškuc (2021))

There exists a one-relator inverse monoid $M = Inv(A | r = 1)$ whose group of units *G* is not a one-relator group.

Question: Is the group of units of Inv $\langle A | r = 1 \rangle$ always finitely presented?²

Definition. A finitely presented group *G* is said to be coherent if every finitely generated subgroup of *G* is finitely presented.

Open problem (Baumslag (1973))

Is every one-relator group coherent?

Theorem (RDG & Ruškuc (2021))

If all one-relator inverse monoids $\text{Inv}(A \mid r = 1)$ have finitely presented groups of units then all one-relator groups are coherent.

▸ Louder and Wilton (2020) & independently Wise (2020) proved that one-relator groups with torsion are coherent.

²It is known to be finitely generated.

Theorem (RDG & Ruškuc (2021))

There exists a one-relator inverse monoid $M = Inv(A | r = 1)$ whose group of units *G* is not a one-relator group.

Question: Is the group of units of Inv $\langle A | r = 1 \rangle$ always finitely presented?²

Definition. A finitely presented group *G* is said to be coherent if every finitely generated subgroup of *G* is finitely presented.

Open problem (Baumslag (1973))

Is every one-relator group coherent?

Theorem (RDG & Ruškuc (2021))

If all one-relator inverse monoids $\text{Inv}(A \mid r = 1)$ have finitely presented groups of units then all one-relator groups are coherent.

- ▸ Louder and Wilton (2020) & independently Wise (2020) proved that one-relator groups with torsion are coherent.
- ▸ Linton (2023) Proved all one-relator groups are coherent.

²It is known to be finitely generated.

Definition. The suffix monoid S_G of $G = Gp(A | r = 1)$ is the submonoid generated by the siffixes of *r*. We say the suffix membership problem is decidable if membership in the submonoid S_G of *G* is decidable.

Example *^G* ⁼ Gp⟨*x*, *^y* [∣] *^x*

$$
G=\operatorname{Gp}\langle x,y\,|\, x^{-1}yx^2yx^3yx=1\rangle
$$

▶ Suffix monoid = Mon $\langle x, yx, xyx, \dots, yx^2yx^3yx \rangle$ = Mon $\langle x, yx \rangle$.

Definition. The suffix monoid S_G of $G = Gp(A | r = 1)$ is the submonoid generated by the siffixes of *r*. We say the suffix membership problem is decidable if membership in the submonoid S_G of *G* is decidable.

Example *^G* ⁼ Gp⟨*x*, *^y* [∣] *^x*

$$
G = \text{Gp}\langle x, y \,|\, x^{-1}yx^2yx^3yx = 1 \rangle
$$

▶ Suffix monoid = Mon $\langle x, yx, xyx, \dots, yx^2yx^3yx \rangle$ = Mon $\langle x, yx \rangle$.

Theorem (Guba, 1997)

If every $Gp(X | x^{-1}yQx = 1)$ with $Q \in X^*$ has decidable suffix membership problem then all monoids $Mon(a, b | bUa = a)$ have decidable word problem.

Definition. The suffix monoid S_G of $G = \text{Gp}(A \mid r = 1)$ is the submonoid generated by the siffixes of *r*. We say the suffix membership problem is decidable if membership in the submonoid S_G of *G* is decidable.

Example *^G* ⁼ Gp⟨*x*, *^y* [∣] *^x*

$$
G = \text{Gp}\langle x, y \,|\, x^{-1}yx^2yx^3yx = 1 \rangle
$$

▶ Suffix monoid = Mon $\langle x, yx, xyx, \dots, yx^2yx^3yx \rangle$ = Mon $\langle x, yx \rangle$.

Theorem (Guba, 1997)

If every $Gp(X | x^{-1}yQx = 1)$ with $Q \in X^*$ has decidable suffix membership problem then all monoids $Mon(a, b | bUa = a)$ have decidable word problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))

There is a positive one-relator group $Gp(A | w = 1)$, $w \in A^+$, with undecidable submonoid membership problem.

Definition. The suffix monoid S_G of $G = \text{Gp}(A \mid r = 1)$ is the submonoid generated by the siffixes of *r*. We say the suffix membership problem is decidable if membership in the submonoid S_G of *G* is decidable.

Example *^G* ⁼ Gp⟨*x*, *^y* [∣] *^x*

$$
G = \text{Gp}\langle x, y \,|\, x^{-1}yx^2yx^3yx = 1 \rangle
$$

▶ Suffix monoid = Mon $\langle x, yx, xyx, \dots, yx^2yx^3yx \rangle$ = Mon $\langle x, yx \rangle$.

Theorem (Guba, 1997)

If every $Gp(X | x^{-1}yQx = 1)$ with $Q \in X^*$ has decidable suffix membership problem then all monoids $Mon(a, b | bUa = a)$ have decidable word problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))

There is a positive one-relator group $Gp(A | w = 1)$, $w \in A^+$, with undecidable submonoid membership problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))

There is a one-relator group Gp $\langle A | v^{-1}u = 1 \rangle$, where $u, v \in A^+$ and $v^{-1}u$ is reduced, with undecidable suffix membership problem.

Open problems

Problem. Let $G = \text{Gp}(A | r = 1)$. Is membership in Mon $\langle A \rangle$ decidable? i.e. is there an algorithm that decides if a given word can be written positively?

Problem. Does every group $Gp(X | x^{-1}yQx = 1)$ with $Q \in X^*$ have decidable suffix membership problem?

Problem. Classify one-relator groups with decidable submonoid membership problem. It remains open for

- ▶ Baumslag–Solitar groups $B(m, n) = \text{Gp}(a, b \mid b^{-1}a^mba^{-n} = 1)$
	- ▸ Solved for *BS*(1, *n*) by Cadilhac, Chistikov & Zetzsche (2020).
- ▶ Surface groups $Gp(a_1, ..., a_g, b_1, ..., b_g | [a_1, b_1] ... [a_g, b_g] = 1)$.
- ► One-relator groups with torsion Gp $\langle A | r^n = 1 \rangle$, $n \ge 2$.

Is there a one-relator group that embeds trace monoid of P_4 but not $A(P_4)$?

Problem. Does $Inv(A | w = 1)$ have decidable word problem when *w* is a reduced word?

Problem. Is the group of units of $Inv(A | w = 1)$ finitely presented?