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One-relator monoids

Mon⟨A ∣ R⟩ = Mon⟨ a1, . . . , an
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

letters / generators

∣ u1 = v1, . . . , um = vm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

words / defining relations

⟩

▸ Defines the monoid M = A∗/ ∼ where ∼ is the equivalence relation with
α ∼ β if α can be transformed into β the other by applying relations R.

Longstanding open problem
Is the word problem decidable for one-relator monoids Mon⟨A ∣ u = v⟩?

Theorem (Adian & Oganesian, 1978+1987)
The word problem for a given Mon⟨A ∣ u = v⟩ can be reduced to the word
problem for a one-relator monoid of the form

Mon⟨a,b ∣ bUa = aVa⟩ or Mon⟨a,b ∣ bUa = a⟩.

▸ Both of these cases remain open!
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Reduction to inverse monoids
▸ Magnus 1932: One-relator groups have decidable word problem.

The monoids Mon⟨a,b ∣ bUa = aVa⟩ and Mon⟨a,b ∣ bUa = a⟩ are not group
embeddable. However Ivanov, Margolis, Meakin (2001) proved that

Mon⟨a,b ∣ bUa = aVa⟩↪ Inv⟨a,b ∣ (aVa)−1bUa = 1⟩ &

Mon⟨a,b ∣ bUa = a⟩↪ Inv⟨a,b ∣ a−1bUa = 1⟩.

Theorem (Ivanov, Margolis, Meakin (2001))
If the word problem is decidable for all inverse monoids of the form
Inv⟨A ∣ w = 1⟩ then the word problem is also decidable for every one-relator
monoid Mon⟨A ∣ u = v⟩.

Word problem for Inv⟨A ∣ w = 1⟩ decidable in many cases:
▸ Idempotent word [Birget, Margolis, Meakin, 1993, 1994]
▸ w-strictly positive [Ivanov, Margolis, Meakin, 2001]
▸ Adjan or Baumslag-Solitar type [Margolis, Meakin, Šuniḱ, 2005]
▸ Sparse word [Hermiller, Lindblad, Meakin, 2010]
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Word problem for one-relator inverse monoids

Theorem (RDG (2020))
There is a one-relator inverse monoid Inv⟨A ∣ w = 1⟩ with undecidable word
problem.

Ingredients for the proof:
▸ Submonoid membership problem for one relator groups.
▸ Right-angled Artin groups (RAAGs).
▸ Right units of inverse monoids and Stephen’s procedure for

constructing Schützenberger graphs.
▸ Properties of E-unitary inverse monoids.
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Inverse monoids
An inverse monoid is a monoid M such that for every x ∈ M there is a unique
x−1 ∈ M such that xx−1x = x and x−1xx−1 = x−1.

Example: IX = monoid of all partial bijections X → X

Examples: In I3

(
1 2 3
2 3 −

)(
1 2 3
3 − 1) =

(
1 2 3
− 1 −

)

(
1 2 3
2 3 −

)

−1
= (

1 2 3
− 1 2)

Note:
γγ−1 = iddomγ
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Inverse monoid presentations
An inverse monoid is a monoid M such that for every x ∈ M there is a unique
x−1 ∈ M such that xx−1x = x and x−1xx−1 = x−1.

For all x, y ∈ M we have

x = xx−1x, (x−1)−1 = x, (xy)−1 = y−1x−1, xx−1yy−1 = yy−1xx−1 (†)

Inv⟨A ∣ ui = vi (i ∈ I)⟩ = Mon⟨A ∪ A−1 ∣ ui = vi (i ∈ I) ∪ (†)⟩
where ui, vi ∈ (A ∪ A−1)∗ and x, y range over all words from (A ∪ A−1)∗.

Free inverse monoid FIM(A) = Inv⟨A ∣ ⟩

Munn (1974)
Elements of FIM(A) can be
represented using Munn trees. e.g. in
FIM(a,b) we have u = w where

u = aa−1bb−1ba−1abb−1

w = bbb−1a−1ab−1aa−1b
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Proof strategy 

M Inv Alr D G GpLA r i

Ur me M mm

N Ur
1T

I Hel

t l
If M has decidable word problem

membership problem for Ur k M is decidable

since for we AUA1 f WE UR Ww 11
sometimes

my membership problem for NEG is decidable

Q1 Is there a one relator group with
f g submonoid NEG such that the membership
problem for N E G is undecidable

Q2 If yes to Q1 can G R N be used to
construct M as above with undecidable word problem
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Right-angled Artin groups
Definition
The right-angled Artin group A(Γ) associated with the graph Γ is

Gp⟨VΓ ∣ uv = vu if and only if {u, v} ∈ EΓ⟩.

Example

a

T b c

d e

A r Gp a b e d e ac ca de ed
ab ba be cb
bd db y
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Submonoid membership problem

G - a finitely generated group with a finite group generating set A.
π ∶ (A ∪ A−1)∗ → G – the canonical monoid homomorphism.
T – a finitely generated submonoid of G.

The membership problem for T within G is decidable if there is an algorithm
which solves the following decision problem:

INPUT: A word w ∈ (A ∪ A−1)∗.
QUESTION: π(w) ∈ T?

Theorem (Lohrey & Steinberg (2008))
A(Γ) has decidable submonoid membership problem⇔ Γ does not embed a
square C4 or a path P4 with four vertices as an induced subgraph.
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HNN-extension of A(P4) over A(P3)
Let P4 be the graph

a b c d

A(P4) = Gp⟨a,b, c,d ∣ ab = ba,bc = cb, cd = dc⟩.
∆1 - subgraph induced by {a,b, c}, ∆2 subgraph induced by {b, c,d},
ψ ∶ ∆1 →∆2 - the isomorphism a↦ b, b↦ c, and c↦ d.

Then the HNN-extension A(P4, ψ) of A(P4) with respect to ψ is

A(P4, ψ)
= Gp⟨a,b, c,d, t ∣ ab = ba,bc = cb, cd = dc, tat−1 = b, tbt−1 = c, tct−1 = d⟩
= Gp⟨a, t ∣ a(tat−1) = (tat−1)a, (tat−1)(t2at−2) = (t2at−2)(tat−1),

(t2at−2)(t3at−3) = (t3at−3)(t2at−2)⟩.
= Gp⟨a, t ∣ atat−1a−1ta−1t−1 = 1⟩.

Conclusion
A(P4) embeds into the one-relator group

A(P4, ψ) = Gp⟨a, t ∣ atat−1a−1ta−1t−1 = 1⟩.
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Right-angled Artin subgroups of one-relator groups

Theorem (RDG (2020))
There is a one-relator group G = Gp⟨A ∣ r = 1⟩ with a fixed finitely generated
submonoid N ≤ G such that the membership problem for N within G is
undecidable.
Proof:
▸ Lohrey & Steinberg (2008) proved that A(P4) contains a finitely

generated submonoid T in which membership is undecidable.
▸ Let G = Gp⟨A ∣ r = 1⟩ be a one-relator group embedding θ ∶ A(P4)↪ G.
▸ Then N = θ(T) is a finitely generated submonoid of G in which

membership is undecidable.

Corollary
A(Γ) embeds into some one-relator group⇐⇒ Γ is a finite forest.

(⇐) Uses Koberda (2013) showing if F is a finite forest A(F)↪ A(P4).
(⇒) Uses a result of Louder and Wilton (2017) on Betti numbers of
subgroups of torsion-free one-relator groups.
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Proof strategy 

M Inv Alr D G GpLA r i

Ur me M mm

N Ur
1T
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t l
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sometimes
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Schützenberger graphs

Let M = Inv⟨A ∣ r = 1⟩ and UR = {m ∈ M ∶ mm−1 = 1} the right units of M.

Aim: Construct an M = Inv⟨A ∣ r = 1⟩ such that membership in UR ≤ M is
undecidable i.e. it is undecidable whether uu−1 = 1 for a given
u ∈ (A ∪ A−1)∗. Then M will have undecidable word problem.

Definition
The Schützenberger graph SΓ(1) of M = Inv⟨A ∣ r = 1⟩ is the subgraph of the
Cayley graph of M induced on the set of right units of M.

Stephen’s procedure
The Schützenberger graph SΓ(1) can be obtained as the limit of a sequence
of labelled digraphs obtained by an iterative construction given by
successively applying operations called expansions and Stallings foldings.
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Example - Stephen’s Procedure

b 7
a
7 an

r 7
b i s 7

b TX
a w
y a 7

b v s
a yb a r z t s s

7I
a s sb
a w s

jv bb a I
a
i 7

bi T
b A

7

7

Inv⟨a,b ∣ aba−1b−1 = 1⟩

Stephen’s procedure
Expansions: Attach a simple
closed path labelled by r at a
vertex (if one does not already
exist).
Stallings foldings: Identify
two edges with the same label
and the same initial or
terminal vertex.
This process may not stop.
Stephen shows that the
▸ process is confluent &
▸ limits in an appropriate

sense to SΓ(1).
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a

fa arT 3J
a
7 zu 4 4

a b
a ay nT b 7 J 7a b

T bi G j a jb b re
w ar v a j yab b 7 b 7

j a j a
b b 7 bu

v a
b b 7

bid a Xb

Lb
i
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Right unit membership

a

fa arT 3J
a
7 zu 4 4

a b
a ay nT b 7 J 7a b

T bi G j a jb b re
w ar v a j yab b 7 b 7

j a j a
b b 7 bu

v a
b b 7

bid a Xb

Lb
i

Inv⟨a,b ∣ aba−1b−1 = 1⟩

w ∈ (A ∪ A−1)∗ is a right unit
⇔ w can be read from the
origin in SΓ(1).

Examples
aaba−1a−1 is a right unit.

Note: This word cannot be
read in the previous unfolded
graph.

bab−1b−1a is not a right unit.
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A general construction
For any r,w1, . . .wk ∈ (A ∪ A−1)∗, with A = {a1, . . . ,an}, set e equal to
a1a−1

1 . . . ana−1
n (tw1t−1

)(tw−1
1 t−1
)(tw2t−1

)(tw−1
2 t−1
) . . . (twkt−1

)(tw−1
k t−1
)a−1

n an . . . a−1
1 a1

where t is a new symbol.

Key claim
Let T be the submonoid of G = Gp⟨A ∣ r = 1⟩ generated by {w1,w2, . . . ,wk},
and let M = Inv⟨A, t ∣ er = 1⟩. Then for all u ∈ (A ∪ A−1)∗ we have

tut−1 ∈ UR in M ⇐⇒ u ∈ T in G.










































































































t
r w

v'tw
t

g 7 Whi
a v Lt

a an
w

at
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The word problem and groups of units

Key question
For which words w ∈ (A ∪ A−1)∗ does Inv⟨A ∣ w = 1⟩ have decidable word
problem? In particular is the word problem always decidable when w is
(a) reduced or (b) cyclically reduced?

Note: A positive answer to (a) would imply the word problem is also
decidable for every one-relator monoid Mon⟨A ∣ u = v⟩.

Theorem (Adjan (1966))
The group of units G of a one-relator monoid M = Mon⟨A ∣ r = 1⟩ is a
one-relator group. Furthermore, M has decidable word problem.

Problem: What are the groups of units of inverse monoids Inv⟨A ∣ r = 1⟩?
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Example - group of units 
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Theorem (Stephen (1990)) The
group of units of M = Inv⟨A ∣ r = 1⟩ is
isomorphic to the group Aut(SΓ(1))
of label-preserving automorphisms of
the Schützenberger graph SΓ(1).

Inv⟨a,b, x ∣ xabx = 1⟩
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Theorem (Stephen (1990)) The
group of units of M = Inv⟨A ∣ r = 1⟩ is
isomorphic to the group Aut(SΓ(1))
of label-preserving automorphisms of
the Schützenberger graph SΓ(1).

Inv⟨a,b, x ∣ xabx = 1⟩

The group of units is

Aut(SΓ(1)) ≅ Z

the infinite cyclic group.
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Units of one-relator inverse monoids and coherence

Theorem (RDG & Ruškuc (2021))
There exists a one-relator inverse monoid M = Inv⟨A ∣ r = 1⟩ whose group of
units G is not a one-relator group.
Question: Is the group of units of Inv⟨A ∣ r = 1⟩ always finitely presented?2

Definition. A finitely presented group G is said to be coherent if every
finitely generated subgroup of G is finitely presented.

Open problem (Baumslag (1973))
Is every one-relator group coherent?

Theorem (RDG & Ruškuc (2021))
If all one-relator inverse monoids Inv⟨A ∣ r = 1⟩ have finitely presented
groups of units then all one-relator groups are coherent.

▸ Louder and Wilton (2020) & independently Wise (2020) proved that
one-relator groups with torsion are coherent.

▸ Linton (2023) Proved all one-relator groups are coherent.

2It is known to be finitely generated.
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Suffix membership problem and positive one-relator groups
Definition. The suffix monoid SG of G = Gp⟨A ∣ r = 1⟩ is the submonoid
generated by the siffixes of r. We say the suffix membership problem is
decidable if membership in the submonoid SG of G is decidable.

Example G = Gp⟨x, y ∣ x−1yx2yx3yx = 1⟩
▸ Suffix monoid = Mon⟨x, yx, xyx, . . . , yx2yx3yx⟩ = Mon⟨x, yx⟩.

Theorem (Guba, 1997)
If every Gp⟨X ∣ x−1yQx = 1⟩ with Q ∈ X∗ has decidable suffix membership
problem then all monoids Mon⟨a,b ∣ bUa = a⟩ have decidable word problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))
There is a positive one-relator group Gp⟨A ∣ w = 1⟩, w ∈ A+, with undecidable
submonoid membership problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))
There is a one-relator group Gp⟨A ∣ v−1u = 1⟩, where u, v ∈ A+ and v−1u is
reduced, with undecidable suffix membership problem.

21 / 22



Suffix membership problem and positive one-relator groups
Definition. The suffix monoid SG of G = Gp⟨A ∣ r = 1⟩ is the submonoid
generated by the siffixes of r. We say the suffix membership problem is
decidable if membership in the submonoid SG of G is decidable.

Example G = Gp⟨x, y ∣ x−1yx2yx3yx = 1⟩
▸ Suffix monoid = Mon⟨x, yx, xyx, . . . , yx2yx3yx⟩ = Mon⟨x, yx⟩.

Theorem (Guba, 1997)
If every Gp⟨X ∣ x−1yQx = 1⟩ with Q ∈ X∗ has decidable suffix membership
problem then all monoids Mon⟨a,b ∣ bUa = a⟩ have decidable word problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))
There is a positive one-relator group Gp⟨A ∣ w = 1⟩, w ∈ A+, with undecidable
submonoid membership problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))
There is a one-relator group Gp⟨A ∣ v−1u = 1⟩, where u, v ∈ A+ and v−1u is
reduced, with undecidable suffix membership problem.

21 / 22



Suffix membership problem and positive one-relator groups
Definition. The suffix monoid SG of G = Gp⟨A ∣ r = 1⟩ is the submonoid
generated by the siffixes of r. We say the suffix membership problem is
decidable if membership in the submonoid SG of G is decidable.

Example G = Gp⟨x, y ∣ x−1yx2yx3yx = 1⟩
▸ Suffix monoid = Mon⟨x, yx, xyx, . . . , yx2yx3yx⟩ = Mon⟨x, yx⟩.

Theorem (Guba, 1997)
If every Gp⟨X ∣ x−1yQx = 1⟩ with Q ∈ X∗ has decidable suffix membership
problem then all monoids Mon⟨a,b ∣ bUa = a⟩ have decidable word problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))
There is a positive one-relator group Gp⟨A ∣ w = 1⟩, w ∈ A+, with undecidable
submonoid membership problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))
There is a one-relator group Gp⟨A ∣ v−1u = 1⟩, where u, v ∈ A+ and v−1u is
reduced, with undecidable suffix membership problem.

21 / 22



Suffix membership problem and positive one-relator groups
Definition. The suffix monoid SG of G = Gp⟨A ∣ r = 1⟩ is the submonoid
generated by the siffixes of r. We say the suffix membership problem is
decidable if membership in the submonoid SG of G is decidable.

Example G = Gp⟨x, y ∣ x−1yx2yx3yx = 1⟩
▸ Suffix monoid = Mon⟨x, yx, xyx, . . . , yx2yx3yx⟩ = Mon⟨x, yx⟩.

Theorem (Guba, 1997)
If every Gp⟨X ∣ x−1yQx = 1⟩ with Q ∈ X∗ has decidable suffix membership
problem then all monoids Mon⟨a,b ∣ bUa = a⟩ have decidable word problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))
There is a positive one-relator group Gp⟨A ∣ w = 1⟩, w ∈ A+, with undecidable
submonoid membership problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))
There is a one-relator group Gp⟨A ∣ v−1u = 1⟩, where u, v ∈ A+ and v−1u is
reduced, with undecidable suffix membership problem.

21 / 22



Open problems

Problem. Let G = Gp⟨A ∣ r = 1⟩. Is membership in Mon⟨A⟩ decidable? i.e. is
there an algorithm that decides if a given word can be written positively?

Problem. Does every group Gp⟨X ∣ x−1yQx = 1⟩ with Q ∈ X∗ have decidable
suffix membership problem?

Problem. Classify one-relator groups with decidable submonoid
membership problem. It remains open for
▸ Baumslag–Solitar groups B(m,n) = Gp⟨a,b ∣ b−1amba−n = 1⟩

▸ Solved for BS(1, n) by Cadilhac, Chistikov & Zetzsche (2020).

▸ Surface groups Gp⟨a1, . . . ,ag,b1, . . . ,bg ∣ [a1,b1] . . . [ag,bg] = 1⟩.
▸ One-relator groups with torsion Gp⟨A ∣ rn = 1⟩, n ≥ 2.

Is there a one-relator group that embeds trace monoid of P4 but not A(P4)?

Problem. Does Inv⟨A ∣ w = 1⟩ have decidable word problem when w is a
reduced word?

Problem. Is the group of units of Inv⟨A ∣ w = 1⟩ finitely presented?
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