One-relator groups, monoids and inverse monoids

Robert D. Gray¹

University of Sydney Algebra Seminar May 2023

¹Research supported by EPSRC Fellowship EP/V032003/1 'Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups'.

One-relator monoids

$$\operatorname{Mon}\langle A \mid R \rangle = \operatorname{Mon}\langle \underbrace{a_1, \ldots, a_n}_{\text{letters / generators}} \mid \underbrace{u_1 = v_1, \ldots, u_m = v_m}_{\text{words / defining relations}} \rangle$$

• Defines the monoid $M = A^* / \sim$ where \sim is the equivalence relation with $\alpha \sim \beta$ if α can be transformed into β the other by applying relations *R*.

Longstanding open problem

Is the word problem decidable for one-relator monoids $Mon\langle A | u = v \rangle$?

One-relator monoids

$$\operatorname{Mon}\langle A | R \rangle = \operatorname{Mon}\langle \underbrace{a_1, \ldots, a_n}_{\text{letters / generators}} | \underbrace{u_1 = v_1, \ldots, u_m = v_m}_{\text{words / defining relations}} \rangle$$

• Defines the monoid $M = A^* / \sim$ where \sim is the equivalence relation with $\alpha \sim \beta$ if α can be transformed into β the other by applying relations *R*.

Longstanding open problem

Is the word problem decidable for one-relator monoids $Mon\langle A | u = v \rangle$?

Theorem (Adian & Oganesian, 1978+1987)

The word problem for a given $Mon\langle A | u = v \rangle$ can be reduced to the word problem for a one-relator monoid of the form

$$\operatorname{Mon}(a, b \mid bUa = aVa)$$
 or $\operatorname{Mon}(a, b \mid bUa = a)$.

Both of these cases remain open!

Reduction to inverse monoids

Magnus 1932: One-relator groups have decidable word problem.

The monoids Mon(a, b | bUa = aVa) and Mon(a, b | bUa = a) are not group embeddable. However Ivanov, Margolis, Meakin (2001) proved that

$$\operatorname{Mon}\langle a, b \mid bUa = aVa \rangle \hookrightarrow \operatorname{Inv}\langle a, b \mid (aVa)^{-1}bUa = 1 \rangle \quad \&$$
$$\operatorname{Mon}\langle a, b \mid bUa = a \rangle \hookrightarrow \operatorname{Inv}\langle a, b \mid a^{-1}bUa = 1 \rangle.$$

Reduction to inverse monoids

Magnus 1932: One-relator groups have decidable word problem.

The monoids Mon(a, b | bUa = aVa) and Mon(a, b | bUa = a) are not group embeddable. However Ivanov, Margolis, Meakin (2001) proved that

$$\operatorname{Mon}\langle a, b \mid bUa = aVa \rangle \hookrightarrow \operatorname{Inv}\langle a, b \mid (aVa)^{-1}bUa = 1 \rangle \quad \&$$
$$\operatorname{Mon}\langle a, b \mid bUa = a \rangle \hookrightarrow \operatorname{Inv}\langle a, b \mid a^{-1}bUa = 1 \rangle.$$

Theorem (Ivanov, Margolis, Meakin (2001))

If the word problem is decidable for all inverse monoids of the form $Inv\langle A | w = 1 \rangle$ then the word problem is also decidable for every one-relator monoid $Mon\langle A | u = v \rangle$.

Word problem for Inv(A | w = 1) decidable in many cases:

- Idempotent word [Birget, Margolis, Meakin, 1993, 1994]
- w-strictly positive [Ivanov, Margolis, Meakin, 2001]
- Adjan or Baumslag-Solitar type [Margolis, Meakin, Šunik, 2005]
- Sparse word [Hermiller, Lindblad, Meakin, 2010]

Word problem for one-relator inverse monoids

Theorem (RDG (2020))

There is a one-relator inverse monoid Inv(A | w = 1) with undecidable word problem.

Word problem for one-relator inverse monoids

Theorem (RDG (2020))

There is a one-relator inverse monoid Inv(A | w = 1) with undecidable word problem.

Ingredients for the proof:

- Submonoid membership problem for one relator groups.
- Right-angled Artin groups (RAAGs).
- Right units of inverse monoids and Stephen's procedure for constructing Schützenberger graphs.
- Properties of *E*-unitary inverse monoids.

Inverse monoids

An inverse monoid is a monoid M such that for every $x \in M$ there is a unique $x^{-1} \in M$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$.

Example: I_X = monoid of all partial bijections $X \rightarrow X$

Inverse monoid presentations

An inverse monoid is a monoid M such that for every $x \in M$ there is a unique $x^{-1} \in M$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$.

For all $x, y \in M$ we have

$$x = xx^{-1}x, \ (x^{-1})^{-1} = x, \ (xy)^{-1} = y^{-1}x^{-1}, \ xx^{-1}yy^{-1} = yy^{-1}xx^{-1}$$
(†)

 $\operatorname{Inv}\langle A \mid u_i = v_i \ (i \in I) \rangle = \operatorname{Mon}\langle A \cup A^{-1} \mid u_i = v_i \ (i \in I) \cup (\dagger) \rangle$

where $u_i, v_i \in (A \cup A^{-1})^*$ and x, y range over all words from $(A \cup A^{-1})^*$. Free inverse monoid FIM $(A) = \text{Inv}\langle A \mid \rangle$

Munn (1974) Elements of FIM(A) can be represented using Munn trees. e.g. in FIM(a, b) we have u = w where

 $u = aa^{-1}bb^{-1}ba^{-1}abb^{-1}$ $w = bbb^{-1}a^{-1}ab^{-1}aa^{-1}b$

Proof strategy

$$M = \operatorname{Inv} \langle A | r = i \rangle \longrightarrow G = \operatorname{Gp} \langle A | r = i \rangle$$

$$U_{R} = \{ m \in M: mm^{-1} = i \}$$

$$\pi$$

$$\pi$$

$$M = \pi(U_{R})$$

If M has decidable word problem

$$\implies$$
 membership problem for $U_R \leq M$ is decidable
since for $w \in (A \cup A^{-1})^*$ $w \in U_R \iff ww^{-1} = 1$
(sometimes)
 $\xrightarrow{}$ membership problem for $N \leq G$ is decidable

Right-angled Artin groups

Definition

The right-angled Artin group $A(\Gamma)$ associated with the graph Γ is

Gp $\langle V\Gamma | uv = vu$ if and only if $\{u, v\} \in E\Gamma \rangle$.

Example

Submonoid membership problem

G - a finitely generated group with a finite group generating set *A*. $\pi: (A \cup A^{-1})^* \to G$ – the canonical monoid homomorphism. *T* – a finitely generated submonoid of *G*.

The membership problem for T within G is decidable if there is an algorithm which solves the following decision problem:

```
INPUT: A word w \in (A \cup A^{-1})^*.
QUESTION: \pi(w) \in T?
```

Theorem (Lohrey & Steinberg (2008))

 $A(\Gamma)$ has decidable submonoid membership problem $\Leftrightarrow \Gamma$ does not embed a square C_4 or a path P_4 with four vertices as an induced subgraph.

Let P_4 be the graph

 $A(P_4) = \operatorname{Gp}(a, b, c, d \mid ab = ba, bc = cb, cd = dc).$

 Δ_1 - subgraph induced by $\{a, b, c\}$, Δ_2 subgraph induced by $\{b, c, d\}$, $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b, b \mapsto c$, and $c \mapsto d$.

Let P_4 be the graph

 $A(P_4) = \operatorname{Gp}\langle a, b, c, d \mid ab = ba, bc = cb, cd = dc \rangle.$

 Δ_1 - subgraph induced by $\{a, b, c\}$, Δ_2 subgraph induced by $\{b, c, d\}$, $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b, b \mapsto c$, and $c \mapsto d$. Then the HNN-extension $A(P_4, \psi)$ of $A(P_4)$ with respect to ψ is

$$\begin{aligned} &A(P_4,\psi) \\ &= & \operatorname{Gp}\langle a,b,c,d,t \,|\, ab = ba, bc = cb, cd = dc, tat^{-1} = b, tbt^{-1} = c, tct^{-1} = d \rangle \end{aligned}$$

Let P_4 be the graph

 $A(P_4) = \operatorname{Gp}\langle a, b, c, d \mid ab = ba, bc = cb, cd = dc \rangle.$

 Δ_1 - subgraph induced by $\{a, b, c\}$, Δ_2 subgraph induced by $\{b, c, d\}$, $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b, b \mapsto c$, and $c \mapsto d$. Then the HNN-extension $A(P_4, \psi)$ of $A(P_4)$ with respect to ψ is

$$\begin{aligned} &A(P_4,\psi) \\ &= Gp\langle a,b,c,d,t \,|\, ab = ba, bc = cb, cd = dc, tat^{-1} = b, tbt^{-1} = c, tct^{-1} = d \rangle \\ &= Gp\langle a,t \,|\, a(tat^{-1}) = (tat^{-1})a, (tat^{-1})(t^2at^{-2}) = (t^2at^{-2})(tat^{-1}), \\ &(t^2at^{-2})(t^3at^{-3}) = (t^3at^{-3})(t^2at^{-2}) \rangle. \end{aligned}$$

Let P_4 be the graph

 $A(P_4) = \operatorname{Gp}\langle a, b, c, d \mid ab = ba, bc = cb, cd = dc \rangle.$

 Δ_1 - subgraph induced by $\{a, b, c\}$, Δ_2 subgraph induced by $\{b, c, d\}$, $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b, b \mapsto c$, and $c \mapsto d$. Then the HNN-extension $A(P_4, \psi)$ of $A(P_4)$ with respect to ψ is

$$\begin{aligned} &A(P_4,\psi) \\ &= Gp\langle a,b,c,d,t \,|\, ab = ba, bc = cb, cd = dc, tat^{-1} = b, tbt^{-1} = c, tct^{-1} = d \rangle \\ &= Gp\langle a,t \,|\, a(tat^{-1}) = (tat^{-1})a, (tat^{-1})(t^2at^{-2}) = (t^2at^{-2})(tat^{-1}), \\ &(t^2at^{-2})(t^3at^{-3}) = (t^3at^{-3})(t^2at^{-2}) \rangle. \end{aligned}$$

 $= \text{Gp}\langle a, t \mid atat^{-1}a^{-1}ta^{-1}t^{-1} = 1 \rangle.$

Let P_4 be the graph

 $A(P_4) = \operatorname{Gp}\langle a, b, c, d \mid ab = ba, bc = cb, cd = dc \rangle.$

 Δ_1 - subgraph induced by $\{a, b, c\}$, Δ_2 subgraph induced by $\{b, c, d\}$, $\psi : \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b, b \mapsto c$, and $c \mapsto d$. Then the HNN-extension $A(P_4, \psi)$ of $A(P_4)$ with respect to ψ is

$$A(P_4, \psi)$$
= Gp(a, b, c, d, t | ab = ba, bc = cb, cd = dc, tat⁻¹ = b, tbt⁻¹ = c, tct⁻¹ = d)
= Gp(a, t | a(tat⁻¹) = (tat⁻¹)a, (tat⁻¹)(t²at⁻²) = (t²at⁻²)(tat⁻¹),
(t²at⁻²)(t³at⁻³) = (t³at⁻³)(t²at⁻²)).

 $= \operatorname{Gp}\langle a, t \mid atat^{-1}a^{-1}ta^{-1}t^{-1} = 1 \rangle.$

Conclusion

 $A(P_4)$ embeds into the one-relator group

$$A(P_4,\psi) = \text{Gp}\langle a,t \,|\, atat^{-1}a^{-1}ta^{-1}t^{-1} = 1 \rangle.$$

Right-angled Artin subgroups of one-relator groups

Theorem (RDG (2020))

There is a one-relator group $G = \text{Gp}\langle A | r = 1 \rangle$ with a fixed finitely generated submonoid $N \leq G$ such that the membership problem for N within G is undecidable.

Proof:

- Lohrey & Steinberg (2008) proved that $A(P_4)$ contains a finitely generated submonoid *T* in which membership is undecidable.
- Let G = Gp(A | r = 1) be a one-relator group embedding $\theta : A(P_4) \hookrightarrow G$.
- ► Then $N = \theta(T)$ is a finitely generated submonoid of *G* in which membership is undecidable.

Right-angled Artin subgroups of one-relator groups

Theorem (RDG (2020))

There is a one-relator group $G = \text{Gp}\langle A | r = 1 \rangle$ with a fixed finitely generated submonoid $N \leq G$ such that the membership problem for N within G is undecidable.

Proof:

- Lohrey & Steinberg (2008) proved that $A(P_4)$ contains a finitely generated submonoid *T* in which membership is undecidable.
- Let G = Gp(A | r = 1) be a one-relator group embedding $\theta : A(P_4) \hookrightarrow G$.
- ► Then $N = \theta(T)$ is a finitely generated submonoid of *G* in which membership is undecidable.

Corollary

 $A(\Gamma)$ embeds into some one-relator group $\iff \Gamma$ is a finite forest.

(⇐) Uses Koberda (2013) showing if *F* is a finite forest $A(F) \hookrightarrow A(P_4)$. (⇒) Uses a result of Louder and Wilton (2017) on Betti numbers of subgroups of torsion-free one-relator groups.

Proof strategy

$$M = \operatorname{Inv} \langle A | r = i \rangle \longrightarrow G = \operatorname{Gp} \langle A | r = i \rangle$$

$$U_{R} = \{ m \in M: mm^{-1} = i \}$$

$$\pi$$

$$\pi$$

$$M = \pi(U_{R})$$

If M has decidable word problem

$$\implies$$
 membership problem for $U_R \leq M$ is decidable
since for $w \in (A \cup A^{-1})^*$ $w \in U_R \iff ww^{-1} = 1$
(sometimes)
 $\xrightarrow{}$ membership problem for $N \leq G$ is decidable

Schützenberger graphs

Let $M = \text{Inv}\langle A | r = 1 \rangle$ and $U_R = \{m \in M : mm^{-1} = 1\}$ the right units of M.

Aim: Construct an $M = \text{Inv}\langle A | r = 1 \rangle$ such that membership in $U_R \leq M$ is undecidable i.e. it is undecidable whether $uu^{-1} = 1$ for a given $u \in (A \cup A^{-1})^*$. Then M will have undecidable word problem.

Schützenberger graphs

Let $M = \text{Inv}\langle A | r = 1 \rangle$ and $U_R = \{m \in M : mm^{-1} = 1\}$ the right units of M.

Aim: Construct an $M = \text{Inv}\langle A | r = 1 \rangle$ such that membership in $U_R \leq M$ is undecidable i.e. it is undecidable whether $uu^{-1} = 1$ for a given $u \in (A \cup A^{-1})^*$. Then M will have undecidable word problem.

Definition

The Schützenberger graph $S\Gamma(1)$ of $M = \text{Inv}\langle A | r = 1 \rangle$ is the subgraph of the Cayley graph of M induced on the set of right units of M.

Stephen's procedure

The Schützenberger graph $S\Gamma(1)$ can be obtained as the limit of a sequence of labelled digraphs obtained by an iterative construction given by successively applying operations called expansions and Stallings foldings.

Example - Stephen's Procedure

 $Inv\langle a, b \mid aba^{-1}b^{-1} = 1 \rangle$

Stephen's procedure

Expansions: Attach a simple closed path labelled by r at a vertex (if one does not already exist).

Stallings foldings: Identify two edges with the same label and the same initial or terminal vertex.

This process may not stop. Stephen shows that the

- process is confluent &
- limits in an appropriate sense to SΓ(1).

Example - Stephen's Procedure

 $Inv\langle a, b \mid aba^{-1}b^{-1} = 1 \rangle$

Stephen's procedure

Expansions: Attach a simple closed path labelled by r at a vertex (if one does not already exist).

Stallings foldings: Identify two edges with the same label and the same initial or terminal vertex.

This process may not stop. Stephen shows that the

- process is confluent &
- limits in an appropriate sense to SΓ(1).

Right unit membership

 $Inv\langle a, b \mid aba^{-1}b^{-1} = 1 \rangle$

 $w \in (A \cup A^{-1})^*$ is a right unit $\Leftrightarrow w$ can be read from the origin in $S\Gamma(1)$.

Examples $aaba^{-1}a^{-1}$ is a right unit.

Note: This word cannot be read in the previous unfolded graph.

 $bab^{-1}b^{-1}a$ is **not** a right unit.

For any $r, w_1, \ldots, w_k \in (A \cup A^{-1})^*$, with $A = \{a_1, \ldots, a_n\}$, set *e* equal to $a_1 a_1^{-1} \ldots a_n a_n^{-1} (tw_1 t^{-1}) (tw_1^{-1} t^{-1}) (tw_2 t^{-1}) (tw_2^{-1} t^{-1}) \ldots (tw_k t^{-1}) (tw_k^{-1} t^{-1}) a_n^{-1} a_n \ldots a_1^{-1} a_1$ where *t* is a new symbol.

Key claim

Let *T* be the submonoid of $G = \text{Gp}\langle A | r = 1 \rangle$ generated by $\{w_1, w_2, \dots, w_k\}$, and let $M = \text{Inv}\langle A, t | er = 1 \rangle$. Then for all $u \in (A \cup A^{-1})^*$ we have

 $tut^{-1} \in U_R \text{ in } M \iff u \in T \text{ in } G.$

For any $r, w_1, \ldots, w_k \in (A \cup A^{-1})^*$, with $A = \{a_1, \ldots, a_n\}$, set *e* equal to $a_1 a_1^{-1} \ldots a_n a_n^{-1} (tw_1 t^{-1}) (tw_1^{-1} t^{-1}) (tw_2 t^{-1}) (tw_2^{-1} t^{-1}) \ldots (tw_k t^{-1}) (tw_k^{-1} t^{-1}) a_n^{-1} a_n \ldots a_1^{-1} a_1$ where *t* is a new symbol.

Key claim

Let *T* be the submonoid of $G = \text{Gp}\langle A | r = 1 \rangle$ generated by $\{w_1, w_2, \dots, w_k\}$, and let $M = \text{Inv}\langle A, t | er = 1 \rangle$. Then for all $u \in (A \cup A^{-1})^*$ we have

 $tut^{-1} \in U_R \text{ in } M \iff u \in T \text{ in } G.$

For any $r, w_1, \ldots, w_k \in (A \cup A^{-1})^*$, with $A = \{a_1, \ldots, a_n\}$, set *e* equal to $a_1 a_1^{-1} \ldots a_n a_n^{-1} (tw_1 t^{-1}) (tw_1^{-1} t^{-1}) (tw_2 t^{-1}) (tw_2^{-1} t^{-1}) \ldots (tw_k t^{-1}) (tw_k^{-1} t^{-1}) a_n^{-1} a_n \ldots a_1^{-1} a_1$ where *t* is a new symbol.

Key claim

Let *T* be the submonoid of $G = \text{Gp}\langle A | r = 1 \rangle$ generated by $\{w_1, w_2, \dots, w_k\}$, and let $M = \text{Inv}\langle A, t | er = 1 \rangle$. Then for all $u \in (A \cup A^{-1})^*$ we have

$$tut^{-1} \in U_R \text{ in } M \iff u \in T \text{ in } G.$$

Theorem (RDG 2020)

If $M = \text{Inv}\langle A, t | er = 1 \rangle$ has decidable word problem then the membership problem for *T* within $G = \text{Gp}\langle A | r = 1 \rangle$ is decidable.

For any $r, w_1, \ldots, w_k \in (A \cup A^{-1})^*$, with $A = \{a_1, \ldots, a_n\}$, set *e* equal to $a_1 a_1^{-1} \ldots a_n a_n^{-1} (tw_1 t^{-1}) (tw_1^{-1} t^{-1}) (tw_2 t^{-1}) (tw_2^{-1} t^{-1}) \ldots (tw_k t^{-1}) (tw_k^{-1} t^{-1}) a_n^{-1} a_n \ldots a_1^{-1} a_1$ where *t* is a new symbol.

Key claim

Let *T* be the submonoid of $G = \text{Gp}\langle A | r = 1 \rangle$ generated by $\{w_1, w_2, \dots, w_k\}$, and let $M = \text{Inv}\langle A, t | er = 1 \rangle$. Then for all $u \in (A \cup A^{-1})^*$ we have

$$tut^{-1} \in U_R \text{ in } M \iff u \in T \text{ in } G.$$

Theorem (RDG 2020)

If $M = \text{Inv}\langle A, t | er = 1 \rangle$ has decidable word problem then the membership problem for *T* within $G = \text{Gp}\langle A | r = 1 \rangle$ is decidable.

Theorem (RDG (2020))

There is a one-relator inverse monoid Inv(A | w = 1) with undecidable word problem.

The word problem and groups of units

Key question

For which words $w \in (A \cup A^{-1})^*$ does Inv(A | w = 1) have decidable word problem? In particular is the word problem always decidable when *w* is (a) reduced or (b) cyclically reduced?

Note: A positive answer to (a) would imply the word problem is also decidable for every one-relator monoid Mon $\langle A | u = v \rangle$.

The word problem and groups of units

Key question

For which words $w \in (A \cup A^{-1})^*$ does Inv(A | w = 1) have decidable word problem? In particular is the word problem always decidable when *w* is (a) reduced or (b) cyclically reduced?

Note: A positive answer to (a) would imply the word problem is also decidable for every one-relator monoid Mon $\langle A | u = v \rangle$.

Theorem (Adjan (1966))

The group of units *G* of a one-relator monoid $M = Mon\langle A | r = 1 \rangle$ is a one-relator group. Furthermore, *M* has decidable word problem.

Problem: What are the groups of units of inverse monoids $Inv\langle A | r = 1 \rangle$?

Example - group of units

Theorem (Stephen (1990)) The group of units of $M = \text{Inv}\langle A | r = 1 \rangle$ is isomorphic to the group $\text{Aut}(S\Gamma(1))$ of label-preserving automorphisms of the Schützenberger graph $S\Gamma(1)$.

Inv(a, b, x | xabx = 1)

Example - group of units

Theorem (Stephen (1990)) The group of units of $M = \text{Inv}\langle A | r = 1 \rangle$ is isomorphic to the group $\text{Aut}(S\Gamma(1))$ of label-preserving automorphisms of the Schützenberger graph $S\Gamma(1)$.

Inv(a, b, x | xabx = 1)

The group of units is

 $\operatorname{Aut}(S\Gamma(1))\cong \mathbb{Z}$

the infinite cyclic group.

Theorem (RDG & Ruškuc (2021))

There exists a one-relator inverse monoid $M = \text{Inv}\langle A | r = 1 \rangle$ whose group of units G is not a one-relator group.

Question: Is the group of units of Inv(A | r = 1) always finitely presented?²

²It is known to be finitely generated.

Theorem (RDG & Ruškuc (2021))

There exists a one-relator inverse monoid $M = \text{Inv}\langle A | r = 1 \rangle$ whose group of units G is not a one-relator group.

Question: Is the group of units of Inv(A | r = 1) always finitely presented?²

Definition. A finitely presented group G is said to be coherent if every finitely generated subgroup of G is finitely presented.

Open problem (Baumslag (1973))

Is every one-relator group coherent?

Theorem (RDG & Ruškuc (2021))

If all one-relator inverse monoids Inv(A | r = 1) have finitely presented groups of units then all one-relator groups are coherent.

²It is known to be finitely generated.

Theorem (RDG & Ruškuc (2021))

There exists a one-relator inverse monoid $M = \text{Inv}\langle A | r = 1 \rangle$ whose group of units G is not a one-relator group.

Question: Is the group of units of Inv(A | r = 1) always finitely presented?²

Definition. A finitely presented group G is said to be coherent if every finitely generated subgroup of G is finitely presented.

Open problem (Baumslag (1973))

Is every one-relator group coherent?

Theorem (RDG & Ruškuc (2021))

If all one-relator inverse monoids $Inv\langle A | r = 1 \rangle$ have finitely presented groups of units then all one-relator groups are coherent.

Louder and Wilton (2020) & independently Wise (2020) proved that one-relator groups with torsion are coherent.

²It is known to be finitely generated.

Theorem (RDG & Ruškuc (2021))

There exists a one-relator inverse monoid $M = \text{Inv}\langle A | r = 1 \rangle$ whose group of units *G* is not a one-relator group.

Question: Is the group of units of Inv(A | r = 1) always finitely presented?²

Definition. A finitely presented group G is said to be coherent if every finitely generated subgroup of G is finitely presented.

Open problem (Baumslag (1973))

Is every one-relator group coherent?

Theorem (RDG & Ruškuc (2021))

If all one-relator inverse monoids $Inv\langle A | r = 1 \rangle$ have finitely presented groups of units then all one-relator groups are coherent.

- Louder and Wilton (2020) & independently Wise (2020) proved that one-relator groups with torsion are coherent.
- Linton (2023) Proved all one-relator groups are coherent.

²It is known to be finitely generated.

Definition. The suffix monoid S_G of $G = \text{Gp}\langle A | r = 1 \rangle$ is the submonoid generated by the siffixes of *r*. We say the suffix membership problem is decidable if membership in the submonoid S_G of *G* is decidable.

Example

$$G = \operatorname{Gp}\langle x, y \mid x^{-1}yx^2yx^3yx = 1 \rangle$$

• Suffix monoid = $Mon(x, yx, xyx, \dots, yx^2yx^3yx) = Mon(x, yx)$.

Definition. The suffix monoid S_G of $G = \text{Gp}\langle A | r = 1 \rangle$ is the submonoid generated by the siffixes of *r*. We say the suffix membership problem is decidable if membership in the submonoid S_G of *G* is decidable.

Example

$$G = \operatorname{Gp}\langle x, y \, | \, x^{-1}yx^2yx^3yx = 1 \rangle$$

• Suffix monoid = $Mon(x, yx, xyx, \dots, yx^2yx^3yx) = Mon(x, yx)$.

Theorem (Guba, 1997)

If every $\operatorname{Gp}(X | x^{-1}yQx = 1)$ with $Q \in X^*$ has decidable suffix membership problem then all monoids $\operatorname{Mon}(a, b | bUa = a)$ have decidable word problem.

Definition. The suffix monoid S_G of $G = \text{Gp}\langle A | r = 1 \rangle$ is the submonoid generated by the siffixes of *r*. We say the suffix membership problem is decidable if membership in the submonoid S_G of *G* is decidable.

Example

$$G = \operatorname{Gp}\langle x, y \, | \, x^{-1}yx^2yx^3yx = 1 \rangle$$

• Suffix monoid = $Mon(x, yx, xyx, \dots, yx^2yx^3yx) = Mon(x, yx)$.

Theorem (Guba, 1997)

If every $\operatorname{Gp}(X | x^{-1}yQx = 1)$ with $Q \in X^*$ has decidable suffix membership problem then all monoids $\operatorname{Mon}(a, b | bUa = a)$ have decidable word problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))

There is a positive one-relator group $\text{Gp}\langle A | w = 1 \rangle$, $w \in A^+$, with undecidable submonoid membership problem.

Definition. The suffix monoid S_G of $G = \text{Gp}\langle A | r = 1 \rangle$ is the submonoid generated by the siffixes of *r*. We say the suffix membership problem is decidable if membership in the submonoid S_G of *G* is decidable.

Example

$$G = \operatorname{Gp}\langle x, y \, | \, x^{-1}yx^2yx^3yx = 1 \rangle$$

• Suffix monoid = $Mon(x, yx, xyx, \dots, yx^2yx^3yx) = Mon(x, yx)$.

Theorem (Guba, 1997)

If every $\operatorname{Gp}(X | x^{-1}yQx = 1)$ with $Q \in X^*$ has decidable suffix membership problem then all monoids $\operatorname{Mon}(a, b | bUa = a)$ have decidable word problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))

There is a positive one-relator group $\text{Gp}(A \mid w = 1)$, $w \in A^+$, with undecidable submonoid membership problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))

There is a one-relator group $\text{Gp}(A | v^{-1}u = 1)$, where $u, v \in A^+$ and $v^{-1}u$ is reduced, with undecidable suffix membership problem.

Open problems

Problem. Let $G = \text{Gp}\langle A | r = 1 \rangle$. Is membership in Mon $\langle A \rangle$ decidable? i.e. is there an algorithm that decides if a given word can be written positively?

Problem. Does every group $Gp(X | x^{-1}yQx = 1)$ with $Q \in X^*$ have decidable suffix membership problem?

Problem. Classify one-relator groups with decidable submonoid membership problem. It remains open for

- Baumslag–Solitar groups $B(m, n) = \text{Gp}\langle a, b | b^{-1}a^{m}ba^{-n} = 1 \rangle$
 - ▶ Solved for *BS*(1,*n*) by Cadilhac, Chistikov & Zetzsche (2020).
- Surface groups $\operatorname{Gp}\langle a_1, \ldots, a_g, b_1, \ldots, b_g | [a_1, b_1] \ldots [a_g, b_g] = 1 \rangle$.
- One-relator groups with torsion $\text{Gp}\langle A \mid r^n = 1 \rangle$, $n \ge 2$.

Is there a one-relator group that embeds trace monoid of P_4 but not $A(P_4)$?

Problem. Does Inv(A | w = 1) have decidable word problem when *w* is a reduced word?

Problem. Is the group of units of Inv(A | w = 1) finitely presented?