Free idempotent generated semigroups over the full linear monoid

Robert Gray (joint work with Igor Dolinka)

Centro de Álgebra da Universidade de Lisboa

Uppsala, September 2012

Connectedness in tables

Tables in algebra

Multiplication tables

Group multiplication tables

	1	а	b	С
1	1	a	b	С
a	a	1	С	b
b	b	С	1	a
с	с	b	a	1

- ► The multiplication table of a group is a Latin square, so..
- ▶ None of the graphs $\Delta(x)$ will be connected.

Tables in algebra

Multiplication tables

Multiplication table of a field.

Field with three elements $\mathbb{F} = \{0, 1, 2\}$.

	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

▶ $\Delta(0)$ is connected

• $\Delta(f)$ is not connected for every $f \neq 0$

Tables in algebra

Vectors

	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$	$\begin{pmatrix} 0\\1\\0 \end{pmatrix}$	$\begin{pmatrix} 0\\1\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	$\begin{pmatrix} 1\\0\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\1\\0 \end{pmatrix}$	$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$
(0, 0, 0)	0	0	0	0	0	0	0	0
(0, 0, 1)	0	1	0	1	0	1	0	1
(0, 1, 0)	0	0	1	1	0	0	1	1
(0, 1, 1)	0	1	1	0	0	1	1	0
(1, 0, 0)	0	0	0	0	1	1	1	1
(1, 0, 1)	0	1	0	1	1	0	1	0
(1, 1, 0)	0	0	1	1	1	1	0	0
(1, 1, 1)	0	1	1	0	1	0	0	1

 $\mathbb{F} = \{0, 1\}$, vectors in \mathbb{F}^3 , entries in table from \mathbb{F}

For every symbol x in the table $\Delta(x)$ is connected.

Outline

Free idempotent generated semigroups

Background Maximal subgroups of free idempotent generated semigroups

The full linear monoid

Basic properties The free idempotent generated semigroup over the full linear monoid Proof ideas: connectedness properties in tables

Open problems

Free idempotent generated semigroups

S - semigroup, E = E(S) - idempotents $e = e^2$ of S

E carries a certain abstract structure: that of a biordered set

Nambooripad (1979), Easdown (1985)

General idea: Fix a biorder E and investigate those semigroups whose idempotents carry this fixed biorder structure.

Within this family there is a unique "free" object IG(E) which is the semigroup defined by presentation:

$$IG(E) = \langle E \mid e \cdot f = ef \ (e, f \in E, \ \{e, f\} \cap \{ef, fe\} \neq \emptyset) \ \rangle$$

IG(E) is called the free idempotent generated semigroup on E.

First steps towards understanding IG(E)

S - semigroup, E = E(S) - idempotents of S

Theorem (Easdown (1985))

Let S be an idempotent generated semigroup with E = E(S). Then IG(E) is an idempotent generated semigroup and there is a surjective homomorphism $\phi : IG(E) \to S$ which is bijective on idempotents.

Conclusion. It is important to understand IG(E) if one is interested in understanding an arbitrary idempotent generated semigroups.

Question. What can be said about the maximal subgroups of free idempotent generated semigroups?

The full linear monoid

 \mathbb{F} - arbitrary field, $n \in \mathbb{N}$

 $M_n(\mathbb{F}) = \{n \times n \text{ matrices over } \mathbb{F}\}.$

- Plays an analogous role in semigroup theory as the general linear group does in group theory.
- Important in a range of areas:
 - Representation theory of semigroups
 - Putcha–Renner theory of linear algebraic monoids and finite monoids of Lie type. Here the biordered set of idempotents of the monoid may be viewed as a generalised building, in the sense of Tits.

Aim

Investigate maximal subgroups of IG(E) where $S = M_n(\mathbb{F})$ and E = E(S).

Properties of $M_n(\mathbb{F})$

Theorem (J.A. Erdös (1967))

 $\langle E(M_n(\mathbb{F})) \rangle = \{ identity \ matrix \ and \ all \ non-invertible \ matrices \}.$

 \blacktriangleright Greens relations ${\cal D}$ and ${\cal J}$ coincide, and the ${\cal D}\mbox{-classes}$ are

$$D_r = \{A : \operatorname{rank}(A) = r\}, \quad r \le n.$$

• The maximal subgroups in D_r are isomorphic to $GL_r(\mathbb{F})$.

The problem

 \mathbb{F} - arbitrary field, $n \in \mathbb{N}$

 $M_n(\mathbb{F}) = \{n \times n \text{ matrices over } \mathbb{F}\}.$

By Easdown (1985) we may identify

$$E = E(M_n(\mathbb{F})) = E(IG(E)).$$

Fix W an idempotent matrix of rank r.

Problem: Identify the maximal subgroup H_W of

$$IG(E) = \langle E \mid e \cdot f = ef \ (e, f \in E, \ \{e, f\} \cap \{ef, fe\} \neq \emptyset) \rangle$$

containing W.

General fact: H_W is a homomorphic preimage of $GL_r(\mathbb{F})$.

Results

 $n \in \mathbb{N}$, \mathbb{F} - field, $E = E(M_n(\mathbb{F}))$,

 $W \in M_n(\mathbb{F})$ - idempotent of rank r

 H_W = maximal subgroup of IG(E)

Theorem (Brittenham, Margolis, Meakin (2009)) For $n \ge 3$ and r = 1 we have $H_W \cong GL_r(\mathbb{F}) \cong \mathbb{F}^*$.

Theorem (Dolinka, Gray (2012))

Let *n* and *r* be positive integers with r < n/3. Then $H_W \cong GL_r(\mathbb{F})$.

Writing down a presentation for H_W

Singular squares

A singular square is a 2×2 rectangular band inside D_r such that there exists an idempotent $t \in E$ acting on the square in one of the following two ways:

▶ In many natural examples, including $M_n(\mathbb{F})$, we have

{ singular squares } = { 2×2 rectangular bands } (Brittenham, Margolis, Meakin (2010)).

- The group H_W is defined by relations arising from singular squares.
- Conclusion: The group H_W is determined by the structure of the idempotents in D_r .

Step 1: Writing down a presentation for H_W

A Rees matrix representation

Definition

A matrix is in reduced row echelon form (RRE form) if:

- rows with at least one nonzero element are above any rows of all zeros
- the leading coefficient (the first nonzero number from the left) of a nonzero row is always strictly to the right of the leading coefficient of the row above it, and
- every leading coefficient is 1 and is the only nonzero entry in its column.

Examples

$$\left[\begin{array}{rrrrr}1&0&0&5\\0&1&0&3\\0&0&1&7\end{array}\right], \left[\begin{array}{rrrrr}1&2&0&5\\0&0&1&7\\0&0&0&0\end{array}\right], \left[\begin{array}{rrrrr}1&0&2&0\\0&1&1&0\\0&0&0&1\end{array}\right].$$

Step 1: Writing down a presentation for H_W

 $n, r \in \mathbb{N}$ fixed with r < n

$$\mathcal{Y}_r = \{r \times n \text{ rank } r \text{ matrices in RRE form}\}$$

$$\mathcal{X}_r = \{ \text{transposes of elements of } \mathcal{Y}_r \}$$

• Matrices in \mathcal{Y}_r have no rows of zeros, so have *r* leading columns.

e.g.
$$n = 4, r = 3, \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \in \mathcal{Y}_3.$$

▶ Define a matrix $P_r = (P_r(Y, X))$ defined for $Y \in \mathcal{Y}_r, X \in \mathcal{X}_r$ by

$$P_r(Y,X) = YX \in M_r(\mathbb{F}).$$

Theorem

The principal factor D_r^0 of $M_n(\mathbb{F})$ is isomorphic to the Rees matrix semigroup $\mathcal{M}^0(GL_r(\mathbb{F}); \mathcal{X}_r, \mathcal{Y}_r; C_r)$ where the structure matrix $C_r = (C_r(Y, X))$ is defined by $C_r(Y, X) = YX$ if $YX \in GL_r(\mathbb{F})$ and 0 otherwise.

The group H_W is defined by the presentation with...

Generators: $\{a_j \mid A_j \text{ is an entry in } P_r \text{ satisfying } A_j \in GL_r(\mathbb{F}) \}$

Relations:

(I)
$$a_j = 1$$
 for all entries A_j in P_r satisfying $A_j = I_r$ A_j A_k
(II) $a_j a_k^{-1} = a_l a_m^{-1} \Leftrightarrow (A_j, A_k, A_l, A_m)$ is a singular square of
invertible $r \times r$ matrices from P_r with $A_j^{-1}A_k = A_l^{-1}A_m$. A_l A_m

Structure of the proof that $H_W \cong GL_r(\mathbb{F})$

Step 1: Write down a presentation for H_W .

Step 2: Prove that for any two entries A_j , A_k in the table P_r , if $A_j = A_k \in GL_r(\mathbb{F})$ then $a_j = a_k$ is deducible from the relations.

Step 3: Find defining relations for $GL_r(\mathbb{F})$ using the singular square relations (II).

Step 2: Strong edges and relations

Definition

We say entries A_i and A_k with $A_i = A_k$ are connected by a strong edge if

Lemma: If $A_j = A_k \in GL_r(\mathbb{F})$ are connected by a strong edge then $a_j = a_k$ is a consequence of the relations.

$$A_j \longrightarrow A_k$$
 a_j a_k
 \Rightarrow \Rightarrow $a_j = a_k$ can be deduced
 I_r I_r 1 1

A singular square Using relations (I)

Proof of Step 2

Proposition: For every pair A_j , A_k of entries in P_r , if $A_j = A_k$ then there is a strong path between A_j and A_k . Thus, for every pair $A_j = A_k \in GL_r(\mathbb{F})$ in the table P_r the relation $a_j = a_k$ is deducible.

Structure of the proof that $H_W \cong GL_r(\mathbb{F})$

Step 1: Write down a presentation for H_W .

Step 2: Prove that for any two entries A_j , A_k in the table P_r , if $A_j = A_k \in GL_r(\mathbb{F})$ then $a_j = a_k$ is deducible from the relations.

Step 3: Find defining relations for $GL_r(\mathbb{F})$ among the singular square relations (II).

Open problems

Theorem (Dolinka, Gray (2012))

Let *n* and *r* be positive integers with r < n/3. Then $H_W \cong GL_r(\mathbb{F})$.

• What happens in higher ranks?

Conjecture (Brittenham, Margolis, Meakin (2010)) Let *n* and *r* be positive integers with $r \le n/2$. Then $H_W \cong GL_r(\mathbb{F})$.

- The same result might even be true for r < n 1.
- ► To prove the conjecture we need a better understanding of the combinatorial connectedness properties of the Rees structure matrices of the principal factors of M_n(F).
- We know that the above result about strong connectedness of symbols does not hold for higher ranks.